这里能搜索到更多你想要的范文→
当前位置:好范文网 > 实用范文 > 其他范文 >

三角函数公式多篇高中(新版多篇)

发布时间:2023-06-28 09:33:56 审核编辑:本站小编下载该Word文档收藏本文

[寄语]三角函数公式多篇高中(新版多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

三角函数公式多篇高中(新版多篇)

万能公式 篇一

sinα=2tan(α/2)/[1+(tan(α/2))] cosα=[1-(tan(α/2))]/[1+(tan(α/2))] tanα=2tan(α/2)/[1-(tan(α/2))]

倍角公式 篇二

sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sina)+(1-2sina)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cosa-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sina) =4sina[(√3/2)-sina] =4sina(sin60°-sina) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cosa-3/4) =4cosa[cosa-(√3/2)^2] =4cosa(cosa-cos30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)

公式 篇三

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

其它公式 篇四

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1-tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1-tan^(α/2)]

你也可以在好范文网搜索更多本站小编为你整理的其他三角函数公式多篇高中(新版多篇)范文。

word该篇DOC格式三角函数公式多篇高中(新版多篇)范文,共有1213个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
三角函数公式多篇高中(新版多篇)下载
三角函数公式多篇高中(新版多篇).doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无