这里能搜索到更多你想要的范文→
当前位置:好范文网 > 实用范文 > 其他范文 >

高三数学知识点之诱导公式精品多篇

发布时间:2023-07-17 10:16:50 审核编辑:本站小编下载该Word文档收藏本文

摘要:高三数学知识点之诱导公式精品多篇为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

高三数学知识点之诱导公式精品多篇

高中数学诱导公式记忆口诀 篇一

规律总结

上面这些诱导公式可以概括为:

对于π/2*k ±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα

上述的记忆口诀是:

奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”。

这十二字口诀的意思就是说:

第一象限内任何一个角的四种三角函数值都是“+”;

第二象限内只有正弦是“+”,其余全部是“-”;

第三象限内切函数是“+”,弦函数是“-”;

第四象限内只有余弦是“+”,其余全部是“-”。

上述记忆口诀,一全正,二正弦,三内切,四余弦

还有一种按照函数类型分象限定正负:

函数类型 第一象限 第二象限 第三象限 第四象限

正弦 。.。.。.。.。.。+。.。.。.。.。.。.+。.。.。.。.。.。.—。.。.。.。.。.。.—。.。.。.。.

余弦 。.。.。.。.。.。+。.。.。.。.。.。.—。.。.。.。.。.。.—。.。.。.。.。.。.+。.。.。.。.

正切 。.。.。.。.。.。+。.。.。.。.。.。.—。.。.。.。.。.。.+。.。.。.。.。.。.—。.。.。.。.

余切 。.。.。.。.。.。+。.。.。.。.。.。.—。.。.。.。.。.。.+。.。.。.。.。.。.—。.。.。.。.

和差化积公式推导 篇二

三角函数的积化和差公式

sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

高中数学诱导两角和差公式 篇三

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

你也可以在好范文网搜索更多本站小编为你整理的其他高三数学知识点之诱导公式精品多篇范文。

word该篇DOC格式高三数学知识点之诱导公式精品多篇范文,共有289个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
高三数学知识点之诱导公式精品多篇下载
高三数学知识点之诱导公式精品多篇.doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无