这里能搜索到更多你想要的范文→
当前位置:好范文网 > 教学资源 > 教育教学方案 >

二次根式教案多篇

发布时间:2023-08-20 16:40:02 审核编辑:本站小编下载该Word文档收藏本文

【导语】二次根式教案多篇为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

二次根式教案多篇

次根式教案 篇一

教学目标:

1、知识目标:二次根式的加减法运算

2、能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。

3、情感态度:培养学生善于思考,一丝不苟的科学精神。

重难点分析:

重点:能熟练进行二次根式的加减运算。

难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。

教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。

运用教具:小黑板等。

教学过程:

问题与情景

师生活动

设计目的

活动一:

情景引入,导学展示

1、把下列二次根式化为最简二次根式: , ; , , 。上述两组二次根式,有什么特点?

2、现有一块长7.5dm、宽5dm的木板,能否采用如教科书图21.3-所示的方式,在这块木板上截出两个面积分别是8dm 和18dm 的正方形木板?

这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。 教师倾听学生的交流,指导学生探究。

问:什么样的二次根式能进行加减运算,运算到那一步为止。

由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。

加强新旧知识的联系。通过观察,初步认识同类二次根式。

引出二次根式加减法则。

3、A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的学习。

例1.计算:

(1) ;

(2) - ;

例2. 计算:

1)

2)

例3.要焊接一个如教科书图21.3—2所示的钢架,大约需要多少米钢材(精确到0.1米)?

活动二:分层练习,合作互助

1、下列计算是否正确?为什么?

(1)

(2) ;

(3) 。

2、计算:

(1) ;

(2)

(3)

(4)

3、(见课本16页)

补充:

活动三:分层检测,反馈小结

教材17页习题:

A层、B层:2、3.

C层1、2.

小结:

这节课你学到了什么知识?你有什么收获?

作业:课堂练习册第5、6页。

自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。

此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1 m, 学生考虑问题要全面,不能漏掉任何一段钢材。

老师提示:

1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。

A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。

点拨:1)对 的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理;

3)运算法则的运用是否正确

先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。

小结时教师要关注:

1)学生是否抓住本课的重点;

2)对于常见错误的认识。

把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。

学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。

二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。

小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。

培养学生的计算的准确性,以培养学生科学的精神。

对课堂的问题及时反馈,使学生熟练掌握新知识。

每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。

次根式教案 篇二

教案

教法:

1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;

2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:

1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。

4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

知识点

上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。

二、展示目标,自主学习:

自学指导:认真阅读课本第3页——4页内容,完成下列任务:

1、请比较与0的大小,你得到的结论是:________________________。

2、完成3页“探究”中的填空,你得到的结论是____________________。

3、看例2是怎样利用性质进行计算的。

4、完成4页“探究”中的填空,你得到的结论是:____________________。

5 、看懂例3,有困难可与同伴交流或问老师。

课时作业

教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm2,另一张面积为450 cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(≈1.414,结果保留整数)

次根式教案 篇三

教学目标

1、根据了解二次根式的概念:

2、知道被开方数必须是非负数的理由;

3、能运用二次根式的性质解决实际问题

4新设计:我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。

5、新设计:问题1平方根的概念,算术平方根的概念,平方根的性质。

6、学情分析:本班40名学生,成绩参差不齐,程度差距很大,鉴于此,对于学生要分层教学。

7、重点难点:1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点:运用二次根式的性质解决实际问题。

8、教学过程6.1第一学时教学活动

活动1【讲授】二次根式

教学过程设计

创设情境,提出问题

引言

我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。

问题1平方根的概念,算术平方根的概念,平方根的性质。

师生活动:给学生充分思考和讨论时间,让他们回忆有关平方根和算术平方根的有关知识,才能在此基础上再进一步研究二次根式概念。

设计意图:回顾已学的数和式的运算,丛数和式运算的完整性角度提出要研究的问题,让学生了解本章将要学习的主要内容,起到先行组织者的作用。

问题2请思考下列问题

面积为3的正方形的边长为,面积为S的正方形边长为。

一个长方形围栏,长是宽的2倍,面积为130㎡,则它的宽为m。

一个物体从高处自由落下,落在地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2。如果用含有h的式子表示t,则t为。

师生活动:学生思考并完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。关键是帮助学生实现从数的算术平方根到用含有字母的式子表示算术平方根的抽象。

设计意图:为概括二次根式的概念提供具体例子,同时发展符号意识。

抽象概括,形成概念

问题3上面得到的式子有什么共同特征?

师生活动:教师引导学生概括得出共同特征,并给出二次根式的定义。

追问1中a的取值有要求吗?为什么?

师生活动:教师引导学生讨论,分析共同特点,归纳得到二次根式的概念,并强调“被开方数非负”。

追问2二次根式有什么样的特点?

师生活动:给学生充分的思考和讨论时间,让学生总结二次根式的特点,教师归纳总结。

设计意图:采用从具体到抽象的方式,通过归纳的出二次根式的概念。

辨析概念,应用巩固

例1下列各式是二次根式吗?

师生活动:教师引导学生从二次根式的特征出发思考问题。

例2求下列二次根式中字母的取值范围:

师生活动:教师可以通过问题“观察各式被开方数是什么?你能根据二次根式的概念的带答案吗?”引导学生从概念出发思考问题。

追问:求二次根式中字母的取值范围的。基本依据:

师生活动:给学生充分的思考和讨论时间,让学生总结回答,教师归纳总结。

问题4 x取何值时,下列二次根式有意义?

师生活动:学生抢答加分,调动学大亨的积极性。

设计意图:让学生独立思考,再追问。

问题5计算

师生活动:通过简单计算让学生总结规律。

例3计算

师生活动:学生直接回答。

设计意图:通过加分制调动学生的积极性,提高学生的注意力,通过练习巩固知识点。

问题7计算

师生活动:通过简单计算让学生总结规律。

追问:

师生活动:学生讨论回答,教师归纳总结。

设计意图:通过简单计算学生自己归纳总结二次根式的性质,加深学生的印象。

综合应用,深化提高

练习1学生完成教科书第3页的练习。

练习2若1<x<4,则化简

设计意图:辨别二次根式的概念,确定二次根式有意的条件。利用二次根式的性质解题。

小结

教师与学生一起回顾本节课所学主要内容,并请学生回答下列问题:

什么叫二次根式?二次根式有意义的条件是什么?二次根式的值的范围是什么?

二次根式与算术平方根有什么联系与区别?

我们以前学过整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?

设计意图:共同回顾本节课学习的概念,再次练习算术平方根理解二次根式的概念,提出二次根式应该研究的问题。

布置作业

教科书习题16.1第1、2题。

教学反思:

1、在实际授课中,通过以下步骤让学生认识、理解、并掌握本节知识:

(1)让学生回顾了算术平方根与平方根的概念,并且通过一个思考栏目的两道题,得出二次根式的定义后又复习了算术平方根具有双重非负性;

(2)通过练习掌握如何判断一个式子是否是二次根式的条件,并经过例1掌握二次根式在实数范围内有意义的条件;

(3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;……,本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。

2、在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。

3、让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。

4、在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的也比较仓促。在今后教学中,应注意时间的掌控。

5、在引导学生探索求知和互动学习方面还有欠缺。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。

次根式教案 篇四

教学目的:

1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;

2、会求二次根式的代数的值;

3、进一步提高学生的综合运算能力。

教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式

教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值

教学过程:

一、二次根式的混合运算

例1 计算:

分析:(1)题是二次根式的。加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。

(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。

练习1:P206 / 8--① P207 / 1①②

例2 计算

问:计算思路是什么?

答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。

二、求代数式的值。 注意两点:

(1)如果已知条件为含二次根式的式子,先把它化简;

(2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。

例3 已知,求的值。

分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。

例4 已知,求的值。

观察代数式的特点,请说出求这个代数式的值的思路。

答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。

三、小结

1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。

2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。

3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。

四、作业

P206 / 7 P206 / 8---②③

次根式教案 篇五

教学目标

1.使学生进一步理解二次根式的意义及基本性质,并能熟练 地化简含二次根式的式子;

2.熟练地进行二次根式的加、减、乘、除混合运算.

教学重点和难点

重点:含二次根式的式子的混合运算.

难点:综合运用二次根式的 性质及运算法则化简和计算含二次根式的式子.

教学过程设计

一、复习

1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各 式成立的条件.

指出:二次根式的这些基本性质都是在一定条件 下才成立的,主要应用于化简二次根式.

2.二次根式 的乘法及除法的法则是什么?用式子表示出来.

指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,

计算结果要把分母有理化.

3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:

4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:

二、例题

例1 x取什么值时,下列各式在实数范围内有意义:

分析:

(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;

(3)题是两个二次根式的和, x的取值必须使两个二次根式都有意义;

(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.

x-2且x0.

解因为n2-90, 9-n20,且n-30,所以n2=9且n3,所以

例3

分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3 -a0和1-a>0.

解 因为1-a>0,3-a0,所以

a<1,|a-2|=2-a.

(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.

问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?

分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.

注意:

所以在化简过程中,

例6

分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.

a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

三、课堂练习

1.选择题:

A.a2B.a2

C.a2D.a<2

A .x+2 B.-x-2

C.-x+2D.x-2

A.2x B.2a

C.-2x D.-2a

2.填空题:

4.计算:

四、小结

1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.

2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.

3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.

4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.

五、作业

1.x是什么值时,下列各式在实数范围内有意义?

2.把下列各式化成最简二次根式:

次根式教案 篇六

一、教学目标

1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。

2、使学生掌握化简一个二次根式成最简二次根式的方法。

3、使学生了解把二次根式化简成最简二次根式在实际问题中的应用。

二、教学重点和难点

1、重点:能够把所给的二次根式,化成最简二次根式。

2、难点:正确运用化一个二次根式成为最简二次根式的方法。

三、教学方法

通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法。

四、教学手段

利用投影仪。

五、教学过程

(一)引入新课

提出问题:如果一个正方形的面积是0.5m2,那么它的边长是多少?能不能求出它的近似值?

了。这样会给解决实际问题带来方便。

(二)新课

由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数。

总结满足什么样的条件是最简二次根式。即:满足下列两个条件的二次根式,叫做最简二次根式:

1、被开方数的因数是整数,因式是整式。

2、被开方数中不含能开得尽方的因数或因式。

例1 指出下列根式中的最简二次根式,并说明为什么。

分析:

说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式。前面二次根式的运算结果也都是最简二次根式。

例2 把下列各式化成最简二次根式:

说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简。

例3 把下列各式化简成最简二次根式:

说明:

1、引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简。

2、要提问学生

问题,通过这个小题使学生明确如何使用化简中的条件。

通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题。

注意:

①化简时,一般需要把被开方数分解因数或分解因式。

②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化。

(三)小结

1、满足什么条件的根式是最简二次根式。

2、把一个二次根式化成最简二次根式的主要方法。

(四)练习

1、指出下列各式中的最简二次根式:

2、把下列各式化成最简二次根式:

六、作业

教材P.187习题11.4;A组1;B组1.

七、板书设计

新人教版八年级数学下册二次根式教案 篇七

1、二次根式:式子 ( ≥0)叫做二次根式。

2、最简二次根式:必须同时满足下列条件:

⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3、同类二次根式:

二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4、二次根式的性质:

(1)( )2= ( ≥0); (2)

5、二次根式的运算:

(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面。

(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式。

(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式。

= • (a≥0,b≥0); (b≥0,a>0)。

(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算。

【典型例题】

1、概念与性质

例1下列各式1) ,

其中是二次根式的是_________(填序号)。

例2、求下列二次根式中字母的取值范围

(1) ;(2)

例3、在根式1) ,最简二次根式是( )

A.1) 2) B.3) 4) C.1) 3) D.1) 4)

例4、已知:

例5、(2009龙岩)已知数a,b,若 =b-a,则 ( )

A. a>b B. a2、二次根式的化简与计算

例1. 将 根号外的a移到根号内,得 ( )

A. ; B. - ; C. - ; D.

例2. 把(a-b)-1a-b 化成最简二次根式

例3、计算:

例4、先化简,再求值:

,其中a= ,b= 。

例5、如图,实数 、在数轴上的位置,化简 :

4、比较数值

(1)、根式变形法

当 时,①如果 ,则 ;②如果 ,则 。

例1、比较 与 的大小。

(2)、平方法

当 时,①如果 ,则 ;②如果 ,则 。

例2、比较 与 的大小。

(3)、分母有理化法

通过分母有理化,利用分子的大小来比较。

例3、比较 与 的大小。

(4)、分子有理化法

通过分子有理化,利用分母的大小来比较。

例4、比较 与 的大小。

(5)、倒数法

例5、比较 与 的大小。

(6)、媒介传递法

适当选择介于两个数之间的媒介值,利用传递性进行比较。

例6、比较 与 的大小。

(7)、作差比较法

在对两数比较大小时,经常运用如下性质:

① ;②

例7、比较 与 的大小。

(8)、求商比较法

它运用如下性质:当a>0,b>0时,则:

① ; ②

例8、比较 与 的大小。

5、规律性问题

例1. 观察下列各式及其验证过程:

, 验证: ;

验证: 。

(1)按照上述两个等式及其验证过程的基本思路,猜想 的变形结果,并进行验证;

(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程。

《二次根式》教学教案 篇八

一、内容和内容解析

1、内容

二次根式的概念。

2、内容解析

本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。

教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。

本节课的教学重点是:了解二次根式的概念;

二、目标和目标解析

1、教学目标

(1)体会研究二次根式是实际的需要。

(2)了解二次根式的概念。

2、教学目标解析

(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。

三、教学问题诊断分析

对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。

本节课的教学难点为:理解二次根式的双重非负性。

四、教学过程设计

1、创设情境,提出问题

问题1你能用带有根号的的式子填空吗?

(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。

(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。

(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。

师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价

【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性。

问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?

师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根。

【设计意图】为概括二次根式的概念作铺垫。

2、抽象概括,形成概念

问题3 你能用一个式子表示一个非负数的算术平方根吗?

师生活动:学生小组讨论,全班交流。教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号。

【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力。

追问:在二次根式的概念中,为什么要强调“a≥0”?

师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由。

【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解。

3、辨析概念,应用巩固

例1 当 时怎样的实数时, 在实数范围内有意义?

师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解。

例2 当 是怎样的实数时, 在实数范围内有意义? 呢?

师生活动:先让学生独立思考,再追问。

【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解。

问题4 你能比较 与0的大小吗?

师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,

【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力。

4、综合运用,巩固提高

练习1 完成教科书第3页的练习。

练习2 当x 是什么实数时,下列各式有意义。

(1) ;(2) ;(3) ;(4) 。

【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件。

【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维。

5、总结反思

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题。

(1)本节课你学到了哪一类新的式子?

(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

(3)二次根式与算术平方根有什么关系?

师生活动:教师引导,学生小结。

【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法。

6。布置作业:

教科书习题16。1第1,3,5, 7,10题。

五、目标检测设计

1、下列各式中,一定是二次根式的是( )

A。 B。 C。 D。

【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数。

2、当 时,二次根式 无意义。

【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题。

3、当 时,二次根式 有最小值,其最小值是 。

【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用。

4、对于 ,(www.haoword.com)小红根据被开方数是非负数,得 出的取值范围是 ≥ 。小慧认为还应考虑分母不为0的情况。你认为小慧的想法正确吗?试求出 的取值范围。

【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑。

次根式教案 篇九

一、内容和内容解析

1、内容

二次根式的除法法则及其逆用,最简二次根式的概念。

2、内容解析

二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础。

基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式。

二、目标和目标解析

1、教学目标

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

(2)会进行简单的二次根式的除法运算;

(3) 理解最简二次根式的概念。

2、目标解析

(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算。

(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式。

三、教学问题诊断分析

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。

本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。

四、教学过程设计

1、复习提问,探究规律

问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动 学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则。

五、目标检测设计

你也可以在好范文网搜索更多本站小编为你整理的其他二次根式教案多篇范文。

word该篇DOC格式二次根式教案多篇范文,共有12372个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
二次根式教案多篇下载
二次根式教案多篇.doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无