这里能搜索到更多你想要的范文→
当前位置:好范文网 > 教学资源 > 教育教学方案 >

二次根式教案(精品多篇)

发布时间:2023-07-05 09:26:08 审核编辑:本站小编下载该Word文档收藏本文

【概述】二次根式教案(精品多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

二次根式教案(精品多篇)

《二次根式》教学教案 篇一

一、内容和内容解析

1、内容

二次根式的概念。

2、内容解析

本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。

教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。

本节课的教学重点是:了解二次根式的概念;

二、目标和目标解析

1、教学目标

(1)体会研究二次根式是实际的需要。

(2)了解二次根式的概念。

2、教学目标解析

(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。

三、教学问题诊断分析

对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。

本节课的教学难点为:理解二次根式的双重非负性。

四、教学过程设计

1、创设情境,提出问题

问题1你能用带有根号的的式子填空吗?

(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。

(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。

(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。

师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价

【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性。

问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?

师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根。

【设计意图】为概括二次根式的概念作铺垫。

2、抽象概括,形成概念

问题3 你能用一个式子表示一个非负数的算术平方根吗?

师生活动:学生小组讨论,全班交流。教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号。

【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力。

追问:在二次根式的概念中,为什么要强调“a≥0”?

师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由。

【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解。

3、辨析概念,应用巩固

例1 当 时怎样的实数时, 在实数范围内有意义?

师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解。

例2 当 是怎样的实数时, 在实数范围内有意义? 呢?

师生活动:先让学生独立思考,再追问。

【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解。

问题4 你能比较 与0的大小吗?

师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,

【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力。

4、综合运用,巩固提高

练习1 完成教科书第3页的练习。

练习2 当x 是什么实数时,下列各式有意义。

(1) ;(2) ;(3) ;(4) 。

【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件。

【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维。

5、总结反思

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题。

(1)本节课你学到了哪一类新的式子?

(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

(3)二次根式与算术平方根有什么关系?

师生活动:教师引导,学生小结。

【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法。

6。布置作业:

教科书习题16。1第1,3,5, 7,10题。

五、目标检测设计

1、下列各式中,一定是二次根式的是( )

A。 B。 C。 D。

【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数。

2、当 时,二次根式 无意义。

【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题。

3、当 时,二次根式 有最小值,其最小值是 。

【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用。

4、对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ 。小慧认为还应考虑分母不为0的情况。你认为小慧的想法正确吗?试求出 的取值范围。

【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑。

次根式教案 篇二

一、学习目标:

1、多项式除以单项式的运算法则及其应用。

2、多项式除以单项式的运算算理。

二、重点难点:

重点:多项式除以单项式的运算法则及其应用

难点:探索多项式与单项式相除的运算法则的过程

三、合作学习:

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1、计算下列各式:

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

2、提问:①说说你是怎样计算的②还有什么发现吗?

(三) 总结法则

1、多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2、本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

随堂练习:教科书练习

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行。

E、多项式除以单项式法则

第三十四学时:14.2.1平方差公式

一、学习目标:

1、经历探索平方差公式的过程。

2、会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)2001×1999 (2)998×1002

导入新课:计算下列多项式的积。

(1)(x+1)(x-1) (2)(m+2)(m-2)

(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a-b)=a2-b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

例2:计算:

(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

随堂练习

次根式教案 篇三

一、内容和内容解析

1、内容

二次根式的概念。

2、内容解析

本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。

教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。

本节课的教学重点是:了解二次根式的概念;

二、目标和目标解析

1、教学目标

(1)体会研究二次根式是实际的需要。

(2)了解二次根式的概念。

2、教学目标解析

(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。

三、教学问题诊断分析

对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。

本节课的教学难点为:理解二次根式的双重非负性。

四、教学过程设计

1、创设情境,提出问题

问题1你能用带有根号的的式子填空吗?

(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.

(2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.

(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.

师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价

【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性。

问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?

师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根。

【设计意图】为概括二次根式的概念作铺垫。

2、抽象概括,形成概念

问题3 你能用一个式子表示一个非负数的算术平方根吗?

师生活动:学生小组讨论,全班交流。教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号。

【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力。

追问:在二次根式的概念中,为什么要强调“a≥0”?

师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由。

【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解。

3、辨析概念,应用巩固

例1 当 时怎样的实数时, 在实数范围内有意义?

师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解。

例2 当 是怎样的实数时, 在实数范围内有意义? 呢?

师生活动:先让学生独立思考,再追问。

【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解。

问题4 你能比较 与0的大小吗?

师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,

【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力。

4、综合运用,巩固提高

练习1 完成教科书第3页的练习。

练习2 当x 是什么实数时,下列各式有意义。

(1) ;(2) ;(3) ;(4) 。

【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件。

【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维。

5、总结反思

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题。

(1)本节课你学到了哪一类新的式子?

(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

(3)二次根式与算术平方根有什么关系?

师生活动:教师引导,学生小结。

【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法。

6、布置作业:

教科书习题16.1第1,3,5, 7,10题。

五、目标检测设计

1、下列各式中,一定是二次根式的是( )

A. B. C. D.

【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数。

2、当 时,二次根式 无意义。

【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题。

3、当 时,二次根式 有最小值,其最小值是 。

【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用。

4、对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ 。小慧认为还应考虑分母不为0的情况。你认为小慧的想法正确吗?试求出 的取值范围。

【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑。

次根式教案 篇四

【教学目标】

1、运用法则

进行二次根式的乘除运算;

2、会用公式

化简二次根式。

【教学重点】

运用

进行化简或计算

【教学难点】

经历二次根式的乘除法则的探究过程

【教学过程】

一、情境创设:

1、复习旧知:什么是二次根式?已学过二次根式的哪些性质?

2、计算:

二、探索活动:

1、学生计算;

2、观察上式及其运算结果,看看其中有什么规律?

3、概括:

得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

将上面的公式逆向运用可得:

积的算术平方根,等于积中各因式的算术平方根的积。

三、例题讲解:

1、计算:

2、化简:

小结:如何化简二次根式?

1、(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

2.P62结果中,被开方数应不含能开得尽方的因数或因式。

四、课堂练习:

(一)。P62 练习1、2

其中2中(5)

注意:

不是积的形式,要因数分解为36×16=242.

(二)。P67 3 计算 (2)(4)

补充练习:

1、(x>0,y>0)

2、拓展与提高:

化简:1)。(a>0,b>0)

2)。(y

2、若,求m的取值范围。

☆3.已知:,求的值。

五、本课小结与作业:

小结:二次根式的乘法法则

作业:

1)。课课练P9-10

2)。补充习题

次根式教案 篇五

教学目标:

1、知识目标:二次根式的加减法运算

2、能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。

3、情感态度:培养学生善于思考,一丝不苟的科学精神。

重难点分析:

重点:能熟练进行二次根式的加减运算。

难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。

教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。

运用教具:小黑板等。

教学过程:

问题与情景

师生活动

设计目的

活动一:

情景引入,导学展示

1、把下列二次根式化为最简二次根式: , ; , , 。上述两组二次根式,有什么特点?

2、现有一块长7.5dm、宽5dm的木板,能否采用如教科书图21.3-所示的方式,在这块木板上截出两个面积分别是8dm 和18dm 的正方形木板?

这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。 教师倾听学生的交流,指导学生探究。

问:什么样的二次根式能进行加减运算,运算到那一步为止。

由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。

加强新旧知识的联系。通过观察,初步认识同类二次根式。

引出二次根式加减法则。

3、A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的学习。

例1.计算:

(1) ;

(2) - ;

例2. 计算:

1)

2)

例3.要焊接一个如教科书图21.3—2所示的钢架,大约需要多少米钢材(精确到0.1米)?

活动二:分层练习,合作互助

1、下列计算是否正确?为什么?

(1)

(2) ;

(3) 。

2、计算:

(1) ;

(2)

(3)

(4)

3、(见课本16页)

补充:

活动三:分层检测,反馈小结

教材17页习题:

A层、B层:2、3.

C层1、2.

小结:

这节课你学到了什么知识?你有什么收获?

作业:课堂练习册第5、6页。

自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。

此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1 m, 学生考虑问题要全面,不能漏掉任何一段钢材。

老师提示:

1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。

A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。

点拨:1)对 的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理;

3)运算法则的运用是否正确

先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。

小结时教师要关注:

1)学生是否抓住本课的重点;

2)对于常见错误的认识。

把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。

学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。

二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。

小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。

培养学生的计算的准确性,以培养学生科学的精神。

对课堂的问题及时反馈,使学生熟练掌握新知识。

每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。

次根式教案 篇六

教案

教法:

1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;

2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:

1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。

4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

知识点

上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。

二、展示目标,自主学习:

自学指导:认真阅读课本第3页——4页内容,完成下列任务:

1、请比较与0的大小,你得到的结论是:________________________。

2、完成3页“探究”中的填空,你得到的结论是____________________。

3、看例2是怎样利用性质进行计算的。

4、完成4页“探究”中的填空,你得到的结论是:____________________。

5 、看懂例3,有困难可与同伴交流或问老师。

课时作业

教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm2,另一张面积为450 cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(≈1.414,结果保留整数)

新人教版八年级数学下册二次根式教案 篇七

1、下列图像中可能是反比例函数y= 的图像的共有 ( )

2、在同一直角坐标系下,直线y=x+1与双曲线y= 的交点的个数为 ( )

A.0个 B.1个 C.2个 D.不能确定

3、反比例函数y=- 的图像是_______,该函数图像在第_______象限。

4、已知反比例函数y= 的图像经过点(1,-2),则这个函数的表达式是_______.

5、已知双曲线y= 经过点(-1,2),那么k的值等于_______.

6、在平面直角坐标系中,分别画出下列函数的图像:

(1)y= (2)y=-

7、反比例函数y= 的图像经过点(-2,3),则k的值为 ( )

A.6 B.-6 C. D.-

8、反比例函数y= 的图像大致是 ( )

9、如图,点P(-3,2)是反比例函数y= (k≠0)的图像上

一点,则反比例函数的解析式为 ( )

A.y=- B.y=-

C.y=- D.y=-

10、函数y=- 的图像上所有点的横坐标与纵坐标的乘积是_______.

11、已知点P为函数y= 图像上一点,且P到原点的距离为2,则符合条件的点P有__个

12、分别在坐标系中画出下列函数的图像:

(1)y= (2)y=-

13、反比例函数y= 的图像经过点(-2,4),求它的解析式,并画出函数图像,图像分布在哪几个象限?

14、设某一直角三角形的面积为18 cm2,两条直角边的长分别为x(cm),y(cm)。

(1)写出y(cm)与x( cm)的函数关系式;

(2)画出该函数的图像;

(3)根据图像,求解:①当x=4 cm时,y的值;②x等于多少时,该直角三角形是等腰直角三角形?

参考答案

1.B 2.C 3.双曲线 二、四 4.y=- 5.-3 6.略

7.C 8.C 9.D 10.-5 11.4 12.略 13.y=- 图像略 分布在二、四象限 14.(1)y= (2)略 (3)①y=9 ② x=6

你也可以在好范文网搜索更多本站小编为你整理的其他二次根式教案(精品多篇)范文。

word该篇DOC格式二次根式教案(精品多篇)范文,共有9120个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
二次根式教案(精品多篇)下载
二次根式教案(精品多篇).doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无