概述:高中数学无穷递降等比数列求和公式【精品多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
性质 篇一
①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每k项之和仍成等比数列;
③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;
④若G是a、b的等比中项,则G^2=ab(G≠0);
⑤在等比数列中,首项a1与公比q都不为零。
⑥在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q^k+1。
⑦数列{An}是等比数列,An=pn+q,则An+K=pn+K也是等比数列,在等比数列中,首项A1与公比q都不为零。注意:上述公式中A^n表示A的n次方。
⑧当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。
.分组求和法 篇二
若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减。
.公式法 篇三
如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式。注意等比数列公示q的取值要分q=1和q≠1.
你也可以在好范文网搜索更多本站小编为你整理的其他高中数学无穷递降等比数列求和公式【精品多篇】范文。