[寄语]《平行四边形的判定》教学设计(精品多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
平行四边形的判定 篇一
七、教学步骤
【引入新课】
由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题).
【讲解新课】
(1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形。
引导学生结合图1,把已知,求证具体化。
分析:因为已知,所以只须证出,为此只需连对角线,通过全等三角形来实现。
证明:(由学生口述)
师:我们已经全面的掌握了平行四边形的判定方法,共有几个方法?哪几个?由学生归纳后用投影仪打出。
(2)平行四边形判定等知识的综合应用
教师指出:平行四边形的有关知识同学们都已掌握,但如何灵活、综合、有效地用来解决有关问题是非常重要的。因此,对典型例题的分析、论证、方法技巧的探讨运用都必须引起重视。
例2 已知: , 分别是 、的中点,结合图1,求证: .
分析:证明两条线段相等,从它们在图形中的位置看,可证明两个三角形全等或证明四边形 为平行四边形(显然后者较前者简单)
证明:(略).
此例题综合运用了平行四边形的性质和判定,证题思路是:先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用基础知识较多,因此应使学生获得清晰的证题思路。
例3 画 ,使 ,,
(按课本讲)
【总结、扩展】
1.小结
平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质来解决某些问题,例如求角的度数,线段长度,证明角相等或互补,证明线段相等或倍分等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用四边形的性质来解决有关问题。
2.思考题:
已知:如图1,在△ 中, , .
求证:
八、布置作业
教材P143中11、12,P144中13、14
九、板书设计
十、背景知识与课外阅读
美妙的莫雷定理
已知:如图1, 和 , 和 , 和 分别为△ 的 、、的三等分线。
求证:∠△ 是正三角形。
这是英国数学家富兰克·莫雷在1899年提出的,不管从已知条件和结论看,都十分对称美妙,数学家柯克特称它是初等几何最惊人的定理之一。
十一、随堂练习
教材P140中1、2
补充:判断
(1)一组对边平行,一组对边相等的四边形是平行四边形( )
(2)一组对角平行,一组对角相等的四边形是平行四边形( )
(3)一组对边相等,一组对角相等的四边形是平行四边形( )
(4)一组对边平行且相等的四边形是平行四边形( )
教学过程 篇二
一、准备题系列
1。复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。(答对者记分,答错的另点同学补充)
2。小实验:有一块平行四喧形的'玻璃片,假如不小心碰碎了解部分(如图所示),同学们想想看,有没有办法把原来的平行四边形重新画出来?
(让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查,初中数学教案《数学教案-平行四边形的判定》。对个别差生稍加点拨,最后请学生回答画图方法) 学生可能想到的画法有:⑴ 分别过A、C作DC、DA的平行线,两平行线相交于B; ⑵过C作DA的平行线,再在这平行线上截取CB=DA,连结BA;⑶ 分别以A、C为圆心,以DC、DA的长为半径画弧,两弧相交于B,连结AB、CB。
还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出 连结AC,取AC的中点O,再连结DO,并延长DO至B,使BO=DO,连结AB、CD。
教学设计示例 篇三
[教学目标]
通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力,数学教案-平行四边形的判定。
你也可以在好范文网搜索更多本站小编为你整理的其他《平行四边形的判定》教学设计(精品多篇)范文。