这里能搜索到更多你想要的范文→
当前位置:好范文网 > 教学资源 > 教育教学方案 >

有理数教案新版多篇

发布时间:2023-07-24 12:22:52 审核编辑:本站小编下载该Word文档收藏本文

[寄语]有理数教案新版多篇为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

有理数教案新版多篇

有理数优秀教案 篇一

[教学目标]

1.掌握有理数的概念,会对有理数按照一定的标准进行分类;

2.了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3.体验分类是数学上常用的处理问题的方法。

[教学重点]

正确理解有理数的概念

[教学难点]

正确理解分类的标准和按照定的标准进行分类

[教学过程]

一、创设情境,引入新课(2分钟)

在前两个学段,我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数。现在请同学们任意写出3个数(找3个同学在黑板上写),把它们分类,并说出你的理由。

二、出示自学提纲(8分钟)

认真阅读课本P7-8内容,完成P8练习并回答下面的问题:

有理数有几种分类方法?分类的标准是什么?

正整数、0、负整数统称_______,正分数和负分数统称__________

整数和分数统称____________

三、检查自学效果(10分钟)

1.把下列各数填入它所属于的集合的圈内:

15,-,-5,,,0.1,-5.32,-80,123,2.333.

2.把下列数填在相应的大括号里:

-4,0.001,0,-1.7,15,.

正数集合{…},负数集合{…},

正整数集合{…},分数集合{…}

3.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?

四、讨论更正,合作探究(8分钟)

1.学生自由更正,各抒已见。

2.引导学生讨论,说出错因和更正的道理。

3.引导学生归纳,上升为理论,指导以后的运用。

五、课堂小结(2分钟)

教师指导学生总结归纳本节课所学知识

六、当堂检测(见下页)(12分钟)

七、布置作业

预习P8-9数轴,完成P14习题1.2第1题

当堂检测内容:

1.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?

+7,-5,,,79,0,0.67,,+5.1

3.最小的自然数是_______,最大的负整数是_______,最小的非负整数是_______。

4.-2.18是。

(A)是负数不是分数(B)不是分数是有理数

(C)是负数也是分数(D)是分数不是有理数

5.下列说法正确的是。

(A)零是最小的整数(B)有这样的一种数,它既是正数也是负数

(C)有这样的一种数,它既不是正数也不是负数(D)有理数中有最小的数,没有最大的数

6.在下列各数中,所属集合正确的是。

-2,0.23,-,0,8,-0.1,3,-2.5

(A)正整数集合:{0,3,8}(B)整数集合:{-2,0,3,8}

(C)负数集合:(D)负分数集合:

有理数教案 篇二

【回顾思考】

1、请认真阅读课本P41-50,并把你认为重要的概念、法则和例题划出。

2、请合上课本,试着回答下列问题:

(1)说说什么是乘方?什么是幂?有什么符号法则?

(2)在做有理数的混合运算时运算顺序怎样?

(3)举例说明什么是科学记数法?

(4)举例说明如何确定一个数的有效数字?

【基础训练】

一、填空:

1、根据乘方的意义,(-3)4=;-34=。

2、的平方等于它本身;的立方等于它本身。

3、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=。

4、若(a-1)2+︳b+2︳=0,那么a+b=。

5、地球上的海洋面积用科学计数法表示为3.61×108平方千米,原来的数是。

6、一天有8.64×104秒,一年按365天计算,一年约有秒(保留3个有效数字)

、填空:

1、若x20xx=1,则x20xx+2005=。

2、平方等于1/16的数是,立方等于-27的数是,立方后是本身的数有。

3、当n为奇数时,1+(-1)n=;当n为偶数时,1+(-1)n=。

4、若︳a-1︳+(b+2)2=0,那么(a+b)20xx+a20xx=。

5、若每人每天浪费水0.32升,那么100万人每天浪费的水为多少升。用科学记数法表示为升。

6、由四舍五入得到的近似数0.8080有个有效数字,分别是,它精确到位。

7、3.16×106原数为,精确到位。

8、写出3,-9,27,-81,243,…这行数的第n个数。

、选择:

1、若规定a⊕b=(a+1)b,则1⊕3的值为()

(A)1(B)3(C)6(D)8

2、(-2)11+(-2)10的值是()

(A)-2(B)(-2)21(C)0(D)-210

3、下列语句中,正确的个数是()

①任何小于1的有理数都大于它的平方

②没有平方得-9的数

、选择:

1、下列各组数中,不相等的是()

(A)(-3)2与-32(B)(-3)2与32(C)(-2)3与-23(D)∣-2∣3与∣-23∣

2、(-2)11+(-2)10的值是()

(A)-2(B)(-2)21(C)0(D)-210

3、下列各式中正确的是()

(A)a2=(-a)2(B)a3=(-a)3(C)-a2=∣-a2∣(D)a3与∣a3∣

4、人类的遗传物质是DNA,他是一个很长的链,最短的也长达30000000个核苷酸。这个数用科学记数法表示为()

(A)3×106(B)0.3×107(C)3×107(D)0.3×108

5、用四舍五入法按要求对0.05019分别取近似值,其中错误的是()

(A)0.1(精确到0.1)(B)0.05(精确到百分位)

(C)0.05(精确到千分位)(D)0.0502(精确到0.0001)

、计算:

1、8+(-3)2×(-2)

2、100÷(-2)2-(-2)÷(-2/3)

3、(-0.25)20xx×(-4)20xx×(-1)20xx

列方程解应用题的基本关系量:

(1)行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度

(2)工程问题:工作效率×工作时间=工作量

(3)浓度问题:溶液×浓度=溶质

(4)银行利率问题:免税利息=本金×利率×时间

有理数教案 篇三

教学目标

1、使学生正确理解数轴的意义,掌握数轴的三要素;

2、使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3、使学生初步理解数形结合的思想方法。

教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。

难点:正确理解有理数与数轴上点的对应关系。

课堂教学过程设计

一、从学生原有认知结构提出问题

1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2、用“射线”能不能表示有理数?为什么?

3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。

二、讲授新课

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃。

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):

1、画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2、规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3、选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴。

进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。

三、运用举例变式练习

例1画一个数轴,并在数轴上画出表示下列各数的点:

例2指出数轴上A,B,C,D,E各点分别表示什么数。

2、说出下面数轴上A,B,C,D,O,M各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示。

四、小结

指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

五、作业

课堂教学设计说明

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

你也可以在好范文网搜索更多本站小编为你整理的其他有理数教案新版多篇范文。

word该篇DOC格式有理数教案新版多篇范文,共有3831个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
有理数教案新版多篇下载
有理数教案新版多篇.doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无