[摘要]绝对值教案精品多篇为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
七年级数学上册《绝对值》教案 篇一
教学目标:
通过数轴,使学生理解绝对值的概念及表示方法
1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算
2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法
3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力
教学重点:
理解绝对值的概念、意义,会求一个数的绝对值
教学难点:
绝对值的概念、意义及应用
教学方法:
探索自主发现法,启发引导法
设计理念:
绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义 。通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。
教学过程:
一、创设情境,复习导入
1、今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。(用多媒体出示引例)
星期天张老师从学校出发,开车去游玩,她先向东行20千米,到了游乐园,下午她又向西行30千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,用有理数表示张老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
+20千米,-30千米; ②(20+30)0.15=7.5升
2、在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了,你还能举出其他类似的例子吗?
3、小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许, 气氛热烈教师巡视,偶尔参加其中一组的讨论,但不直接肯定或否定学生的问题,而是引导鼓励学生思考、交流,请各小组派代表汇报讨论结果。
我们小组举的例子是:我爸爸喜欢炒股,一天他支出10 000元购买A股票,同一天他又抛出B股票收入15 000元,规定支出为负,那么爸爸两次的交易额用有理数如何表示?如果交易所每次交易按总额的千分之一收费,那么爸爸的这两次交易需交多少交易费?
4、在实际生活中存在不关注相反意义的例子,刚才我们所举例子中的计算,都不必考虑它们的正、负性,看来我们的。确很有必要给上面涉及的量取一个名字。我们把这个量叫做有理数的绝对值。
二、合作交流、探索新知
1、绝对值的概念
⑴ 如图,在数轴上,+3和-3虽然符号不同,但表示这两个数的点到原点的距离都是3,我们把这个距离叫做+3和-3 的绝对值
+3的绝对值就是数轴上表示+3的点到原点的距离,+3的绝对值是3,记作: =3
-3的绝对值就是数轴上表示-3的点到原点的距离, -3的绝对值是3,记作: =3
⑵ 一个数a的绝对值是数轴上表示数a的点到原点的距离, 数a的绝对值,记作:
2、探索绝对值意义
⑴ 学生探索:求6,-6, ,- ,2.5,-2.5的绝对值
小组讨论:互为相反数的两个数的绝对值有什么关系?
规律总结:互为相反数的两个数的绝对值相等
⑵ 学生抢答:
学生小组讨论得出:
一个正数的绝对值是它的本身,即:若a0,则 =a
一个负数的绝对值是它的相反数, 即:若a0,则 =-a
0的绝对值是0 , 即:若a=0,则 =0
(3)学生活动:
在数轴上自己标出五个数,让同桌指出它们的绝对值,引导学生观察,讨论得出:
任何一个数的绝对值都是非负数(正数和0)
= =
三、举一反三,灵活应用
四、达标反馈
填空
(1) 数轴上离开原点2个单位长的点所表示的数是___
(2) 数轴上到原点的距离等于1.5的点所表示的数是 ______
(3) 正数的绝对值是_________,负数的绝对值是___________, 零的绝对值是______
(4) 从数轴上看,一个数的绝对值就是表示这个数离开原点的________
(5) 49是______的相反数,它是_______的绝对值
(6) 如果一个数的绝对值等于 ,那么这个数是________
(7) 绝对值小于3的整数有___,它们的和为___
(8) 若 =0,则a_____0
五、学习小结:
1、绝对值的概念、意义
① 数轴上的点到原点的距离叫做这个点表示的有理数的绝对值
② 正数的绝对值是它的本身
负数的绝对值是它的相反数
0的绝对值是0
③ = =
④ 绝对值是非负数 0
⑤ 有理数可理解为由性质符号和绝对值组成
⑥ 互为相反数的两个数可理解为符号相反、绝对值相同的两个数
2、学会发现、探索、合作交流,体会数形结合,分类讨论等数学思想方法
六、设计理念:
绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。
七年级数学上册《绝对值》教案 篇二
教学目标
1、知识与技能
会利用绝对值比较两个负数的大小
2、过程与方法
利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力
3、情感、态度与价值观
敢于面对数学活动中的困难,有学好数学的自信心
教学重点难点
重点:利用绝对值比较两个负数的大小
难点:利用绝对值比较两个异分母负分数的大小
教与学互动设计
(一)创设情境,导入新课
投影 你能比较下列各组数的大小吗?
(1)│-3│与│-8│
(2)4与-5
(3)0与3
(4)-7和0
(5)0.9和1.2
(二)合作交流,解读探究
讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数
思考 若任取两个负数,该如何比较它的大小呢?
点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?
【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大
注意
①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小
②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值
③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小,即:利用数轴来比较有理数的大小
学习目标: 篇三
1、知道一个数的绝对值与这个数的本身或它的相反数的关系,并会根据这种关系求一个数的绝对值。
2、会运用绝对值比较两个有理数的大小。
3、会综合应用绝对值、相反数、数轴的知识解题
七年级数学上册《绝对值》教案 篇四
一、学习与导学目标:
知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;
过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;
情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。
二、学程与导程活动:
A、创设情境(幻灯片或挂图)
1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。
再如测量误差问题、排球重量谁更接近标准问题
2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。
B、学习概念:
1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。
如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)
2、尝试回答
(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;
(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;
(3)︱0︱= 。(幻灯片)
思考:你能从中发现什么规律?引导学生得出:(幻灯片)
性质:一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
零的绝对值是零。
如果用字母a表示有理数,上述性质可表述为:
当a是正数时,︱a︱=a;
当a是负数时,︱a︱=-a;
当a=0时,︱a︱=0。
解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:
在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?
3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。
显然,结合问题的实际意义不难得到:-4-202。
因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。
再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)
通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小。
4、师生活动比较下列各对数的大小:P17例,P18练习。
5、师生小结归纳(幻灯片)
三、笔记与板书提纲:
1、幻灯片
2、师生板演练习P15/1
四、练习与拓展选题:
P19/4,5,9,10
你也可以在好范文网搜索更多本站小编为你整理的其他绝对值教案精品多篇范文。