这里能搜索到更多你想要的范文→
当前位置:好范文网 > 教学资源 > 教育教学方案 >

《正比例函数》教案(新版多篇)

发布时间:2023-07-01 09:38:53 审核编辑:本站小编下载该Word文档收藏本文

[摘要]《正比例函数》教案(新版多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

《正比例函数》教案(新版多篇)

六年级数学《正比例》教案 篇一

教学目标:

1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。

2、通过练习,巩固对正比例意义的认识。

3、情感、态度与价值观:初步渗透函数思想。

重点难点:

能根据数量关系式或图象判断两种量是否成正比例。

教学准备:

投影仪。

教学过程:

一、新课讲授

教学第46页内容。

教师出示表格(见书),依据表中的数据描点。(见书)

师:从图中你发现了什么?

生:这些点都在同一条直线上。

看图回答问题

①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4、0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?

你还能提出什么问题?有什么体会?

组织学生分小组汇报,学生汇报时可能会说出

①正比例关系的图象是一条经过原点的直线。

②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。

二、练习讲授

1、基本练习。

(1)投影出示教材第49页第1题。

教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。

教师要求学生从两个方面说明为什么成正比例。

a、电是随着用电量的增加而增加;

b、电费与用电量的比值总是相等的。

师生共同订正。

(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……

①出示下表,填表。

一列火车行驶的时间和路程

②填表并思考发现了什么?

③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)

④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。

⑤用式子表示它们的关系:路程÷时间=速度(一定)。

教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。

2、指导练习。

(1)完成教材第49页第2题。

(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。

(3)解决教材49页第4题:

①投影出示书中的表格,引导学生观察表中的数据。

②组织学生在小组中合作探究。

a、动手画一画,指名汇报图象特点。

b、组织学生说一说,相互交流。

提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。

三、课堂作业

1、根据x和y成正比例关系,填写表中的空格。

2、看图回答问题。

(1)在这一过程中,哪个量没变?

(2)路程和时间有什么关系?

(3)不计算,从图中看出4小时行驶多少千米?

(4)7小时行驶多少千米?

课堂小结:

教师:判断两个相关联的量成正比例的三个要素是什么?

通过这节课的学习,你有什么收获?

课后作业:

完成练习册中本课时的练习。

板书设计:

正比例图像

图像:一条过原点的直线。

《正比例》优秀教案 篇二

教学目标:

1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

教学重难点:进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

教学准备 :实物投影

教学预设:

一、概念复习:

1、提问:怎样的两个量成正、反比例?

根据学生回答板书字母关系式。

二、书本练习:

1、第9题。

(1)观察每个表中的数据,讨论前三个问题。

要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

(2)组织学生讨论第四个问题。

启发学生根据条件直接写出关系式,再根据关系式直接作出判断。

2、第10题。

(1)看图填写表格。

(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。

要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。

(3)启发学生运用有关比例尺的知识进行解答。

3、第11题。

填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

4、第12题。

引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

5、第13题。

让学生小组进行讨论,教师指导有困难的学生。

三、补充练习

1、对比练习:判断下列说法是否正确。

(1)圆的周长和圆的半径成正比例。( )

(2)圆的面积和圆的半径成正比例。( )

(3)圆的面积和圆的半径的平方成正比例。( )

(4)圆的面积和圆的周长的平方成正比例。( )

(5)正方形的面积和边长成正比例。( )

(6)正方形的周长和边长成正比例。( )

(7)长方形的面积一定时,长和宽成反比例。( )

(8)长方形的周长一定时,长和宽成反比例。( )

(9)三角形的面积一定时,底和高成反比例。( )

(10)梯形的面积一定时,上底和下底的和与高成反比例。( )

六年级数学《正比例》教案 篇三

教学要求:

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:

认识正比例关系的意义。

教学难点:

掌握成正比例量的变化规律及其特征。

教学过程:

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一 m.niubb.net 个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

二、自主探究:

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?

(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?

引导学生进行讨论,得出:

(1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。

(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。

(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)

2.教学例2。

出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的比值一定)

3.概括正比例的意义。

(1)综合例1、例2的共同点。

提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

(2)概括正比例关系的意义。

像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第95页最后连个自然段。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。

4、教学例3学生看书自学,小组讨论,集体交流。

(1)数量与时间是不是两种相关联的量?

(2)数量与时间有什么关系?他们的比值是谁?比值是不是不变的?

(3)判断数量与时间是不是成正比例?

5、完成97页练一练。

三、巩固练习

1.(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

2、做练习十一第1题。

让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

一种苹果,买5千克要10元。照这样计算,买15千克要30元。

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?关键是列出关系式,看是不是比值一定。

五、家庭作业

练习十一第2~6题。

《正比例》的教学设计 篇四

【教学内容】

正比例

【教学目标】

使学生理解正比例的意义,会正确判断成正比例的量。

【重点难点】

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。

【教学准备】

投影仪。

【复习导入】

1、复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?

板书:=速度。

②已知总价和数量,怎样求单价?

板书:=单价。

③已知工作总量和工作时间,怎样求工作效率?

板书:=工作效率。

2、引入课题:

这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

【新课讲授】

1、教学例1。

教师用投影仪出示例1的图和表格。

学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?

(2)铅笔的总价是怎样随着数量的变化而变化的?

(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的总价随着数量变化,它们是两种相关联的量。

②数量增加,总价也增加;数量降低,总价也减少。

③铅笔的总价和数量的比值总是一定的,即单价一定。

教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2、教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是=速度(一定)。

教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

3、归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?

②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。

要求学生把握三个要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三:两个量的比值一定。

4、用字母表示正比例的关系。

教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)

5、教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

【课堂作业】

完成教材第46页的“做一做”(1)~(3)。

答案:

(1)比值表示每小时行驶多少km。

(2)成正比例。理由:路程随着时间的变化而变化。

①时间增加,路程也增加,时间减少,路程也随着减少;

②路程和时间的比值(速度)一定。

【课堂小结】

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

《正比例》优秀教案 篇五

教学要求:

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:认识正比例关系的意义。

教学难点:掌握成正比例量的变化规律及其特征。

教学过程:

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度 时间 路程

(2)单价 数量 总价

(3)工作效率 工作时间 工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

二、教学新课

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让 学 生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论,得出:

(1)表里的两种量是所行时间和所行路程。路程和时间是两种相关联的量,(板书:两种相关联的量)路程随着时间的变化而变化。

(2)时间扩大,路程也扩大;时间缩小,路程也缩小。

(3)可以看出它们的变化规律是:路程和时间比的比值总是一定的。(板书:路程和时间比的比值一定)因为路程和时间对应数值比的比值都是50。提问:这里比值50是什么数量?(谁能说出它的数量关系式?想一想,这个式子表示的是什么意思?(把上面板书补充成:速度一定时,路程和时间比的比值一定)

2.教学例2。

出示例2和思考题。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?枝数比的比值一定)你是怎样发现的?比值1.6是什么数量,你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成c单价一定时,总价和枝数比的比值一定)

3.概括。

(1)综合例1、例2的共同点。

提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

(2)概括正比例关系的意义。

像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第40页最后一节。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢? 指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子 =k (一定)来表示。

4.具体认识。

(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

(2)做练习八第1题。

让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

5.教学例3。

出示例3,让学生思考。提问:怎样判断是不是成正比例?哪位同学说说零件总数和时间成不成正比例?为什么?请同学们看一看例3,书上怎样判断的,我们说得对不对。追问:判断两种量是不是成正比例要怎样想?强调:关键是列出关系式,看是不是比值一定。

三、巩固练习

现在,我们根据上面的判断方法来做一些题。

1.做“练一练”第l题。

指名学生口答,说明理由。可以结合写出数量关系式。

2.做“练一练”第2题。

指名口答,并要求说明理由。

3.做练习八第2题。

小黑板出示。让学生把成正比例关系的先勾出来。指名口答,选择几题让学生说一说怎样想的?(必要时写出关系式让学生判断)

4.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

一种苹果,买5千克要10元。照这样计算,买15千克要30元。

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

五、家庭作业

练习八第3题。

《正比例》优秀教案 篇六

教学目标:

1、知道与正比例函数的意义.

2、能写出实际问题中正比例关系与关系的解析式.

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解.

教学难点:根据具体条件求与正比例函数的解析式.

教学方法:结构教学法、以学生“再创造”为主的教学方法

教学过程:

1、复习旧课

前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)

2、引入新课

就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。教师将学生的正确的例子写在黑板上)

这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。)不难看出函数都是用自变量的一次式表示的,可以写成( )的形式.

一般地,如果( 是常数, )(括号内用红字强调)那么y叫做x的.特别地,当b=0时, 就成为( 是常数, )

3、例题讲解

例1、某油管因地震破裂,导致每分钟漏出原油30公升

(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式

(2)破裂3.5小時后,共漏出原油多少公升

《正比例》优秀教案 篇七

教学目标

1、使学生理解正比例的意义.

2、能根据正比例的意义判断两种量是不是成正比例.

3、培养学生的抽象概括能力和分析判断能力.

4、使学生理解正比例的意义.

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.

教学过程

一、复习

出示下面的题目,让学生回答..已知路程和时间,怎样求速度?板书: =速度

2.已知总价和数量,怎样求单价?板书:=单价

3.已知工作总量和工作时间,怎样求工作效率?板书:=工作效率

4.已知总产量和公顷数,怎样求公顷产量?板书:=公顷产量

二、导入新课

教师:这是我们过去学过的一些常见的数量关系.这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系.(板书课题:正比例的意义.)

三、新课

1、教学例1.

用小黑板出示例1:一列火车行驶的时间和所行的路程如下表;

时间(时) 1 2 3 4 5 6 7 8

路程(千米) 90 180 270 360 450 540 630 720

提问:

表中有哪几种量?

当时间是1小时时,路程是多少?当时间是2小时时,路程又是多少?

这说明时间这种量变化了,路程这种量怎么样了?(也变化了.)

教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量(板书:两种相关联的量).

时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?

让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值.教师板书出来:=90,=90,=90,=90,

让学生观察这些比和它们的比值,看有什么规律.教师板书:相对应的两个数的比值(也就是商)一定.

比值90,实际上是火车的什么?你能将这些式子所表示的意义写成一个关系式吗?板书:=速度(一定)

教师小结:通过刚才的观察和分析,我们知道路程和时间是两种什么样的量?(两种相关联的量.)路程和时间这两种量的变化规律是什么呢?〔路程和时间的比的比值(速度)总是一定的.〕

2、教学例2.

出示例2:在布店的柜台上,有像下面一张写着某种花布的米数和总价的表.

数量(米) 1 2 3 4 5 6 7

总价(元) 8。2 16。4 24。6 32。8 41。0 49。2 57。4

让学生观察上表,并回答下面的问题:

(1)表中有哪两种量?

(2)米数扩大,总价怎样?米数缩小,总价怎样?

(3)相对应的总价和米数的比各是多少?比值是多少?

然后进一步问:

这个比值实际上是什么?你能用一个关系式表示它们的关系吗?板书:=单价(一定)

教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价随着扩大;米数缩小,总价也随着缩小.它们扩大、缩小的规律是:总价和米数的比的比值总是一定的.

3、抽象概括正比例的意义.

教师:请同学们比较一下刚才这两个例题,回答下面的问题:

(1)都有几种量?

(2)这两种量有没有关系?

(3)这两种量的比值都是怎样的?

教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定.像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系.

最后教师提出:如果我们用字母x,y表示两种相关联的量,用字母k表示它们的比值,你能将正比例关系用字母表示出来吗?教师板书

4、教学例3.

出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

教师引导:

面粉的总重量和袋数是不是相关联的量?

面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否一定?板书:=每袋面粉的重量(一定)

已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例.

5、巩固练习.

让学生试做第13页做一做中的题目.其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以

四、课堂练习

小学《正比例》的教学设计 篇八

【教学内容】

正比例

【教学目标】

使学生理解正比例的意义,会正确判断成正比例的量。

【重点难点】

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。

【教学准备】

投影仪。

【复习导入】

1。复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?

板书: =速度。

②已知总价和数量,怎样求单价?

板书: =单价。

③已知工作总量和工作时间,怎样求工作效率?

板书: =工作效率。

2。引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

【新课讲授】

1。 教学例1。

教师用投影仪出示例1的图和表格。

学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?

(2)铅笔的总价是怎样随着数量的变化而变化的?

(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的。总价随着数量变化,它们是两种相关联的量。

②数量增加,总价也增加;数量降低,总价也减少。

③铅笔的总价和数量的比值总是一定的,即单价一定。

教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2、教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。

教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

3、归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?

②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。

要求学生把握三个要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三:两个量的比值一定。

4、用字母表示正比例的关系。

教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)

5、教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

【课堂作业】

完成教材第46页的“做一做”(1)~(3)。

答案:

(1) 比值表示每小时行驶多少km。

(2)成正比例。理由:路程随着时间的变化而变化。

①时间增加,路程也增加,时间减少,路程也随着减少;

②路程和时间的比值(速度)一定。

【课堂小结】

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

六年级数学《正比例》教案 篇九

【教学目标】

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

【教学重难点】

重点:

成正比例的量的特征及其断方法。

难点:

理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

【教学过程】

一、四顾旧知,复习铺垫

商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

学生独立完成后师提问:你们是怎样比较的?

生:我先求出每种袜子的单价,再进行比较。

师:你是根据哪个数量关系式进行计算的?

生:因为总价=单价×数量,所以单价=总价÷数量。

师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

二、引导探索,学习新知

1、教学例1,学习正比例的意义。

(1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

(2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

2、计算表中的数据,理解正比例的意义。

(1)计算相应的总价与数量的比值,看看有什么规律。学生计算后汇报:= = =…=3、5,每一组数据的比值一定。

(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的`数)

(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

(4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

3、列举并讨论成正比例的量。

(1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

(2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

两种量中相对应的两个数的比值一定,这是关键。

4、认识正比例图象。(课件出示例1的表格及正比例图象)

(1)观察表格和图象,你发现了什么?

(2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

无论怎样延长,得到的都是直线。

(3)从正比例图象中,你知道了什么?

生1:可以由一个量的值直接找到对应的另一个量的值。

生2:可以直观地看到成正比例的量的变化情况。

(4)利用正比例图象解决问题。

不计算,根据图象判断,如果买9 m彩带,总价是多少?49元能买多少米彩带?

小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。+

三、课堂练习:

1、P46“做一做”

2、练习九第1、3~7

你也可以在好范文网搜索更多本站小编为你整理的其他《正比例函数》教案(新版多篇)范文。

word该篇DOC格式《正比例函数》教案(新版多篇)范文,共有12328个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
《正比例函数》教案(新版多篇)下载
《正比例函数》教案(新版多篇).doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无