[概述]因数和倍数教案(多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
因数和倍数教案 篇一
教学资料:人教版12—16页的相关资料。
教学目标。
1、让学生理解倍数和因数的好处,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1—100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、让学生初步意识到能够从一个新的'角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括潜力,学会有序地思考问题,体会数学资料的奇妙、搞笑,产生对数学的好奇心。
教学重点:让学生理解倍数和因数的好处。
教学难点:探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
教学过程:
一、操作空间,初步感知
1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。
2.学生动手操作,并与同桌交流摆法。
3.请用算式表达你的摆法。汇报:1×12=12,2×6=12,3×4=12。
【评析】透过让学生动手操作、想象、表达等环节,既为新知探索带给材料,又孕育求一个数的因数的思考方法。
二、探索空间,理解新知。
1.理解因数和倍数
(1)我们就以3×4=12这道乘法算式为例,数学上我们说12是3的倍数,12也是4的倍数,3和4时12的因数。这就是我们这天所要研究的因数和倍数。
师板书:因数和倍数
师:根据黑板上的另两道算式,自己试着说说谁是谁的倍数,谁是谁的因数?指名口答。
(2)追问:如果说12是倍数,2是因数,能够吗?为什么?
教师:看来,倍数和因数的关系是相互的,我们只能说某个数是某个数的倍数,某个数是某个数的因数,不能够直接说某数是倍数,某数是因数。而且为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
(3)拓展:出示72页想想做做第一题。同桌互练,指名口答。
(4)师:老师还写了一个算式,从这个算式里你能找到因数和倍数吗?24÷8=3看来,我们不仅仅能够根据乘法算式找因数和倍数,也能够根据除法算式找因数和倍数。
(5)试一试:从中选取两个数,用这天学的知识随便说两句话。
4682415
2、探索求一个数的倍数的方法
(1)师:刚才我们已经明白12是3的倍数,那还有哪些数也是3的倍数呢?请同学们自己找一找?同桌交流交流。
屏幕显示:3的倍数有哪些?指名学生回答。
(2)师:什么样的数是3的倍数?
明确:3的倍数是3与一个数相乘的积。如,3×1=(),3×2=(),3×3=(),括号里的数都是3的倍数。
教师:谁能按从小到大的顺序有条理地说出3的倍数?能把3的倍数全部说完吗?就应怎样表示?根据学生的口答,屏幕显示:3的倍数有3、6、9、12、15……。
(3)请你用同样的方法,找找2的倍数和5的倍数?
(4)提问:请同学们观察,刚才所找的2、3、5的倍数,你有什么发现?能够小组内讨论交流。
(5)、根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数;一个数倍数的个数是无限的。
【评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。
3、探索求一个数的因数的方法
(1)师:透过刚才的动脑思考,你们已经能够有序地找出一个数的倍数了,你能找出36的所有因数吗?
出示要求:①可独立完成,也可同桌合作。②可借助刚才找出12的所有因数的方法。③写出36的所有因数。4想一想,怎样找才能保证既不重复,又不遗漏。
(2)学生尝试。搜集学生作业,交流各自找一个数因数的方法。方法1:想乘法算式36×1=36;方法2:想除法算式36÷1=36;方法3:想乘法口诀;
(在交流中学生很有可能不能说完整,而是透过互相补充得到36所有的因数)板书:36的因数有:1,2,3,4,6,9,12,18,36。
(3)怎样找才能不重复不遗漏?在小组里说一说。
学生想到的方法可能是:从小到大找;一对一对找。
(4)试一试:你能找出15和16所有的因数吗?
(5)观察36、15和16的所有因数,你有什么发现吗?(小结出一个数最小的因数是1,最大的是本身)
【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。透过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
全课总结
1、这天我们一齐认识了倍数和因数,阅读课本70页,你还能发现什么?
2、游戏:对号入座规则:老师出一个数,看你卡片上的数是否贴合下面的条件,贴合的请站起来并且举起你的卡片。
师:我是45,我要找我的因数。我是6,我要找我的倍数。我是8,我要找我的因数,同时我也要找我的倍数。坐着的同学,下面老师要出个什么数字,不管是倍数还是因数,你们都能全部站起来吗?我是1,我找我的倍数。学生站起后宣布下课。
教学反思:
本课教学设计重在让学生透过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点:
一、留足空间,让探索有质量。
留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一、把让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现带给了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:透过观察36,15,16的因数和3,6的倍数,你发现了什么?由于带给了丰富的观察对象,保证了观察的目的性。第三:让学生“选用4,6,8,24,1,5中的一些数字,用这天学习的知识说一句话”。不拘形式的说话空间,不仅仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。
二、适度引导,让探索有方向。
引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断构成、知识不断建构的过程。
什么叫做因数和倍数 篇二
一、教学分析
(一)教学内容分析
本课教学内容是国标苏教版小学数学四年级(下册)第九单元的第一课时,教材第70~72页。
例1通过用12个同样大的正方形拼成不同长方形的操作,让学生写出不同的乘法算式,在此基础上教学倍数和因数的意义。例2教学找一个数的倍数,并结合“试一试”引导发现一个数倍数的特征。例3教学找一个数的因数,再结合“试一试”引导发现一个数因数的特征。
(二)教学对象分析
在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(三)教学环境分析
这节课,我采用“活动单”导学模式,依托多媒体互动视频教学系统来开展各项活动,力求通过多媒体互动视频教学系统将抽象的概念形象具体地呈现出来,将学生操作和思维清晰地展示出来,从而使学生更好地理解和掌握本节课的学习内容。
二、教学目标
知识技能:理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
数学思考:初步意识到可以从一个数的角度来研究非零自然数的特征及其相互关系。
解决问题:在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。
情感态度:让学生学会用数学的眼光观察生活、思考问题,能积极参与对数学问题的探究活动,真真切切地体验学习数学的快乐和价值。
三、教学重点、难点
理解倍数和因数的含义,能按要求找出一个数的倍数和因数。
四、教学流程
整合点1:用图像声音创设情境
第一步,情境导入。我运用多媒体创设了帮助神探柯南破译密码的问题情境,通过这样的问题,激发学生的探究欲望。在突出“倍数”和“因数”这两个关键词之后,板书课题,揭示本节课的教学内容。
整合点2:用直观演示深化体验
在“建立概念”部分,通过这样几个层次,进行教学。学生根据活动要求操作思考,我把学生的操作情况通过摄像头整体投射到屏幕上,根据学生的汇报把相应的组满屏显示,并把各种拼法及对应的算式剪切入电子白板中,为下一步教学做好准备。通过旋转操作,让学生直观感受到这样的两个图形代表同一种拼法。根据学生得出的乘法算式,拖出本节课的两个概念,并让学生举一反三,说说这两个算式中数字间的倍数和因数关系。
整合点3:用动态展示突出本质
在“应用概念”部分,通过这样几个环节展开教学。首先让学生自己对这些问题进行探索,在学生汇报找到的3的倍数时,有选择性地进行截屏,同时展示学生多样化的方法,让学生比较、辨析、优化,建立有序地寻找一个数倍数的方法。根据3个实例,归纳倍数的特征,我使用白板的圈画功能,形象地突出了倍数的特点,突破了难点。
接着教学找一个数因数的方法,归纳因数的特征。在学生独立思考、初步探究后,我将学生中两种典型的想法,同时呈现在白板上,这样学生的思维过程就清晰地展示了出来,在此基础上点拨提升,通过层技术显示几乘几等于36和36除以几等于几,这两个一般性的算式,并通过圈画突出列举的有序性,强调“成对找,分开写”的口诀。接着归纳因数的特征,我仍使用白板的圈画功能,突显了因数的特征。新授结束后,通过这样的练习,让学生自己在白板上操作,及时进行方法的巩固。
由于本节课的知识点比较多,所以在回顾总结时,我通过重点画面的回放,帮助学生梳理、回顾本节课的学习内容,再让学生用本节课所学知识解决课始的问题,有问有答,前后呼应。最后进行检测反馈。
教学感悟
多媒体互动视频教学系统有着强大的人机交互功能和便捷的'信息采集功)www.haoword.com(能,能够将课堂中的生成性资源即时保存,随时调用。在本节课中,学生操作、探究得到的各种生成性资源被有选择地展现出来,在此基础上点拨提升,言之有物、针对性强;而且这些生成性资源还是下一环节必要的教学素材,这样环环相扣、前后贯通,一步步引领学生走进倍数和因数的世界。
因数与倍数教案 篇三
第一单元 倍数与因数
3的倍数的特征
第6课时
[教学内容] 数的奇偶性
[教学目标]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学重、难点]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学过程]
活动1:利用数的奇偶性解决一些简单的实际问题。
让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。
试一试:
本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。
活动2:探索奇数、偶数相加的规律
先研究“偶数+偶数”的规律,在经历“列式计算―初步得出结论―举例验证―得出结论”的过程后,再引导学生用这样的研究方式探索“奇数+奇数”“奇数+偶数”的奇偶性变化规律,最后让学生应用结论判断计算结果是奇数还是偶数。还可以引导学生研究减法中奇偶性的变化规律
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
[板书设计]
数的奇偶性
例子: 结论:
12 + 34 = 48 偶数+偶数=偶数
11 + 37 =48 奇数+奇数=偶数
12 + 11 =23 奇数+偶数=奇数
因数和倍数的教案 篇四
教学目标:
1.结合整数乘、除法运算初步认识倍数和因数的含义;
2.自主探索求一个数的倍数或因数的方法;
3.在认识倍数和因数以及探索一个数的倍数或因数的过程中,感知因数和倍数的依存关系,进一步体会数学知识之间的内在联系。
教学重点:
理解因数和倍数的含义。
教学难点:
自主探索并初步总结找一个数的倍数和因数的方法。
教学过程:
一、课前谈话:(略)
二、新课引入:
1.师:同学们的桌上都放着12个同样大的正方形,请你每次用这12个正方形拼成一个长方形,注意你不同的摆法?(每排摆几个?摆了几排?)看谁的方法多?速度快?会用算式表示你的摆法吗?
学生交流几种不同的摆法。随着学生交流屏幕上一一演示。2.进行交流:
如:每排摆了几个,摆了几排?你会用算式表示吗?
师:12个同样大小的正方形能摆3种不同的的长方形,可以用乘法算式或除法算式来表示,千万别小看这些算式,今天我们研究的内容就在这里。我们以第一道乘法算式为例。(屏幕出示)
43=12,
师:在这个算式中,你认为4、3、12有什么关系呢?
我们一起来读一读:
因为:43=12,
所以:12是4的倍数,12也是3的倍数,
4是12的因数,3也是12的因数,
读读看,能读懂吗?
继续出示:因为:62=12 ,所以
因为:121=12 ,所以
谁也来出个乘法算式说一说。(略)
三、探索研究:
1.师:我们刚才初步认识了因数和倍数,下面要进一步来研究因数和倍数。(出示课题:因数 倍数)
屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?
4、5、18、20、36
师:老师在听的时候发现4、18都是36的因数,你也发现了吗?
师:4、18、都是36的因数。
师:36的因数只有这2个吗?
师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数全部找出来(既不重复又不遗漏)?请你选择你喜欢的方式,可以同桌合作,也可以独立完成,找出36的所有因数。如果能把怎么找到的方法写在纸上更好。
学生填写时师巡视搜集作业。
2.交流作业。(略)
板书:36的因数:1、2、3、4、6、9、12、18、36。
师:通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?试一个。
15的因数有 再试一个:
16的因数有
观察36、15、16的所有因数,你有什么发现吗?
边交流边板书:
个数 最小 最大
因数 1 它本身
倍数
3.师:找一个数的因数掌握的不错,会找一个数的倍数吗?
3的倍数:(找不完怎么办?) 有小巧门吗? (略)
板书:3的倍数:3、6、9、12、15
找出7的倍数:7、14、21、28、35
交流方法。在找一个数倍数时发现:板书:
个数 最小 最大
因数 有限的 1 它本身
倍数 无限的 它本身 (没有的)
30以内5的倍数:(注意反馈)5、10、15、20、25、30
4.判断:(下面的说法是不是正确?)
⑴ 12是4的倍数,12也是6的倍数。
⑵ 8是16的因数,8又是4的倍数。
⑶ 1没有因数。
⑷ 5是倍数。
小结:倍数或因数都是指两个数之间的关系,不能单独说
我们在研究倍数和因数时,所说的数一般指不是0的自然数。
板书完整: 不是0的自然数
四、实践应用
师:因数和倍数的知识在实际生活中有很多运用。
1.春游。
乘坐小艇每人应付4元,你能把下表填写完整吗?
24个同学表演团体操,把队伍的排列情况填写完整。
2.做操。
表中的排数和每排人数与24都有怎样的关系?反馈:表中的'应付元数都有什么共同特点?(都是4的倍数)
排数是24的因数。每排的人数呢?(也都是24的因数。为什么?)
3.存钱。
有一位青年志愿者要省下30元生活费,买学习用品送给生活困难的同学。他每天存出一样的钱数,请问有几种存法?
(30的因数:1、2、3、5、6、10、15、30)
师:看来因数倍数大量存在于我们的生活中。
五、课堂小结。
刚才我们一起研究、认识了倍数和因数,你学得怎样?
因数与倍数教案 篇五
教学内容
认识自然数和整数,倍数和因数。
教学目标
1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。初步探索找一个数的倍数的方法,能在1――100的自然数中,找出10以内某数的所有倍数。
2、学生经历探索认识倍数和因数的含义,能对生活中有关的数字作出合理的解释。在教师帮助下,初步学会选择有用的信息进行简单地归纳与类比,发展合情推理能力。
3、在老师、同学的帮助下,对身边与数学有关的某些事物有好奇心,参与数学活动,体验数学与日常生活密切联系。
教学重点
探究倍数和因数
教学难点
倍数和因数的关系的理解
教学过程
一、结合“水果店”情境图,认识自然数和整数。
1、谈话引入。
2、出示水果店情境图。
(1)学生活动:找一找。仔细观察图中有哪些数?我能找到几个?全班进行交流。
(2)教师提示:还有要补充的吗?(目的是让学生找出图中隐含的数字,比如0,1/2等。
(3)学生活动:分一分。你能把它们分分类吗?学生单独活动,教师帮助有困难的学生。全班再进行交流。交流时让学生说出分类的标准和分类的结果。教师要适当地进行引导,为下面教学自然数和整数做准备。
(4)根据学生的分类情况,加上教师的适当引导,揭示什么样的数是自然数,什么样的数是整数?并让学生举出例子来进一步说明和巩固。
二、利用整数乘法认识倍数和因数。
1、解决:买5千克梨需要多少钱?
5×4=20(元)
2、利用算式说明倍数和因数的含义。
(1)说明含义。20是4和5的倍数;4和5是20的因数(需进一步使学生明确,20是4的倍数也是5的倍数;4是20的因数,5也是20的因数)关于倍数和因数这种相互依存的关系,学生第一次接触,教师要让学生多说一说,并通过一定的例证进一步说明。
(2)举例说明。举出一个乘法算式,说出其中的因数和倍数关系。
(3)练习:说一说。第3页“说一说”先自己试说,同桌之间交流后,再进行全班交流。
3、说明研究倍数和因数的范围。教师根据课堂生成,相机给出“只在自然数(零除外)的范围内研究倍数和因数”这个规定。
三、练习巩固,加深理解。
1、第3页:找一找。学生独立理解题意后,先自己找出7的倍数,小组内交流自己找的方法。全班交流时让学生在比较后得出用乘法算式的方法来找一个数的倍数比较方便快捷。同时使学生领悟到:这个数是7的倍数,那么7同时也是这个数的因数。通过试一试:你还能找出7的其它倍数吗?使学生体会到一个数的倍数是无限的。
2、同桌练习:你写我说。在学生弄懂题目意思后,再开展活动。活动后让中后生进行全班交流。
3、比一比:看谁找的快。(1)自己找,比比谁找的快。要求作出各自的符号。(2)组织交流,比比谁的方法好,比比谁找的对。(3)归纳。说说哪几个数既是4的倍数,又是6的倍数。为学习公倍数作准备。
4、独立练习。写出100以内全部6的倍数。交流时,体会怎样做到不重复,不遗漏,进一步明确方法。
5、讨论:根据除法算式如何说倍数和因数。例如:15÷3=5.
四、全课小结。
五、板书设计:
倍数与因数
像0,1,2,3,4,5,6,…这样的数是自然数。
像-3,-2,-1,0,1,2,3,…这样的数是整数。
买5千克梨需要多少元?
5×4=20(元)
你也可以在好范文网搜索更多本站小编为你整理的其他因数和倍数教案(多篇)范文。