这里能搜索到更多你想要的范文→
当前位置:好范文网 > 实用范文 > 其他范文 >

小学数学教研计划思维导图(精品多篇)

发布时间:2023-10-11 00:40:19 审核编辑:本站小编下载该Word文档收藏本文

[前言]小学数学教研计划思维导图(精品多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

小学数学教研计划思维导图(精品多篇)

初二下学期数学思维导图 篇一

1、知名中小学教育专家团队精心研究,有雄厚的理论基础;融合全国数十名一线高级教师的教学经验和多省市状元的学习方法,有丰富的实践经验。

2、将知识点以图形的形式展现出来,把复杂的数学逻辑推理简单化,完全符合人类记忆理解能力特点,效果提升数百倍。

3、《数学思维导图》编制名师和专家亲临授课,精彩讲授。

4、数学思维导图大讲堂结合个性化一对一辅导,效果更佳。

5、讲堂实时互动,提升学生对数学知识点的记忆理解能力。

6、通过利用颜色、线条、图形、联想和想象绘制的思维导图,充分利用了右脑对图像的记忆功能,大大提高我们对数学公式、定义的记忆功能;

7、思维导图可用来随堂作笔记,思维导图作笔记有随意性,能融入自己的知识的理解和认知,能把自己的所听所见所想都融入到笔记中,提升记笔记的条理性和灵活性;

8、其他作用:思维导图对数学考试,思考问题,集中注意力,分析解决问题,知识剖析及归类等也有很大的作用。

初二数学第一章知识点 篇二

一、全等形

1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。

2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合。

二、全等多边形

1、定义:能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、性质:

(1)全等多边形的对应边相等,对应角相等。

(2)全等多边形的面积相等。

三、全等三角形

1、全等符号:≌。如图,不是为:△ABC≌△ABC。读作:三角形ABC全等于三角形ABC。

2、全等三角形的判定定理:

(1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,边角边)

(2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,角边角)

(3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,角角边)

(4)有三边对应相等的两三角形全等。(即SSS,边边边)

(5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,斜边直角边)

3、全等三角形的性质:

(1)全等三角形的对应边相等、对应角相等

(2)全等三角形的周长相等、面积相等

(3)全等三角形对应边上的中线、高,对应角的平分线都相等。

4、全等三角形的作用:

(1)用于直接证明线段相等,角相等。

(2)用于证明直线的平行关系、垂直关系等。

(3)用于测量人不能的到达的路程的长短等。

(4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。

(5)用于解决有关等积等问题。

如何使用数学思维导图 篇三

1如何使用数学思维导图

注重应用的示范与引导

与传统的教学方法相比,运用思维思维导图开展教学优势明显,仅用简单的图形及文字,便可清楚的了解数学知识点间的内在联系,降低了学生掌握难度,有效避免学生畏难情绪的出现,增强学生学习数学知识的信心。因此,初中数学教学实践中,教师不仅要注重思维导图的应用,而且还应教会学生运用思维导图,帮助总结所学的数学知识,为此,教师应通过正确的示范与引导,使学生掌握思维导图画法,使其应用到实际的学习过程中。

在给学生进行示范及引导时,一方面教师应为学生讲解思维导图的画法及应注意事项,确保所画的思维导图能涵盖所学的重要知识点。另一方面,为激发学生画思维导图的积极性,教师可鼓励不同小组、不同学生之间进行思维导图绘画比赛,不断提高学生绘画思维导图的熟练程度,从而更好的应用到实际的学习活动中。

提高运用思维导图意识

首先,注重思维导图应用的合理性。教学实践中,教师应把握初中数学教学重点知识,认真分析与重点知识关联的其他知识点,并将思维导图板书在黑板上,展示给学生。同时,依托思维导图帮助学生回顾所学知识点,并适当的提问学生,检查学生掌握数学知识情况,使学生能够对照自身数学知识掌握情况查漏补缺。其次,注重思维导图在不同教学环节中的融入。初中数学知识点多而零碎,为此,无论是新课导入还是旧课回顾,教师应注重运用思维导图引导教学活动的开展。最后,做好总结与反思。教师运用思维导图时,应根据学生反馈效果,对思维导图的应用进行总结与反思,了解思维导图应用中存在的不足,并及时补充遗漏的知识,使得思维导图更为完善,更好的为初中数学教学活动服务。

例如,在绘制全等三角形思维导图时,起初教师并未绘制角平分线性质这一知识点,但考虑到角平分线性质和全等三角形之间存在一定关联,尤其是一些题目中全等三角形判定时需应用到角平分线性质知识点,最终对之前的思维导图进行补充,使得绘制的思维导图更为完善

2数学教学中如何运用思维导图

运用思维导图,为学生学习数学打牢基础

在初中数学教学中,让学生掌握基础性的概念和定义,并能够深入的理解这些内容,对发展学生的数学能力有着非常重要的作用。 只有将数学基础知识进行牢固的掌握,才能实现对这些定理、定义的运用,这成为解决数学题目的第一步。 通过一些初中数学调研资料可知,学生做错题目或因为有难度而放弃答题,归根到底就是学生对基础定理理解不够深刻和牢固,使得其在解题的过程中对习题没有读懂,或理解出现偏差,导致学生数学学习困难的发生。

因此,在初中数学教学中,要加强对数学的基本定理以及定义方面的教学力度,包括教学时间以及课前准备方面。 在以往的教学模式中,教师更多的是让学生进行死记硬背,通过让学生抄写很多遍,或是在课堂上背诵的模式所得到的效果不佳。 而应该从思维训练的根本上入手,提高学生思维的灵活性。

鼓励学生构建自己的思维导图

在数学的教学和使用中,思维能力的好坏往往对数学的学习和使用效能有着较大的影响。 在目前的教学实际当中,初中数学的目标就是要对学生的思维和潜能进行开发。 采用新的教学理念和方法,以让学生能够掌握学习的方法、实现学生独立学习为根本的教学目标。 鉴于此,教师在教学过程中应该起到良好的导向作用,通过介绍一些适合学生的学习方法,提高学生学习的自主性。

将思维导图应用于初中数学教学,可以通过学生在构建自己的思维导图过程中,发现自己存在的知识漏洞,然后及时采用有效的方式来改正学习的不足,逐层攻克学习的困难以取得更大进步。 与此同时,教师在对这些难点进行解答之后,可以结合学生的特性,构建一个关键节点来让学生完善思维导图。

3思维导图在数学教学中的应用

增强复习效果

在初中数学教学中,仅仅依靠课堂上的45分钟是无法达到教学要求的,而复习作为一个重要阶段,初中数学复习的好坏同样关系到数学教学质量。在复习阶段,利用思维导图,将需要复习的知识点通过图形连接在一起,让学生一目了然地进行复习。首先,利用思维导图便于学生记忆和复习。课堂上只有45分钟,而一节课所要复习的知识点非常多,一张思维导图可以将课堂上的知识点进行汇总,让学生在复习的过程可以不断地对自己的数学思维导图进行补充与完善。

提高数学预习效果

在初中数学教学过程中,课前预习是数学学习的一个重要环节。学生要想学好数学,就必须做好课前预习。利用思维导图进行预习,将要预习的内容通过图形的方式展现出来,帮助学生明确目标,让学生抓住预习的重点,理清自己的思路。同时,利用思维导图,可以让学生带有目的性地去听课,进而提高效率,方便学生消化知识。通过检查学生的思维导图,教师能够迅速找到学生对该内容的思维障碍点,确定重点与难点,使讲课更加有针对性和实效性,真正做到因材施教。

扩散解题思维

在初中数学教学中,习题是提高数学学习效率的一种重要途径,利用思维导图,学生可以发挥自己的思考方式,根据自己的需要去解析题目,并找出解题思路。思维导图作为一种有效的认知工具,它具有发散性功能,利用思维道路分析问题,有助于学生对已掌握知识的充分调动,从而解决问题。

4运用思维导图的作用

(1)优化知识结构,实现自主学习。

在教学过程中,思维导图的运用,不仅可以帮助学生清晰地掌握知识的逻辑结构,还可以突出教学难点重点,优化课堂教学结构,达到教学效果最大化。在数学新课程的改革中,明确提出要建立以学生为课堂主体的教学模式,以培养学生自主学习能力和思考能力为多层次的教学目标,而不是简简单单教学内容的掌握。因此,传统的数学教学方法已经没有办法满足新的教学需求。在这样一种数学教学现状下,如何优化知识结构以实现学生的自主学习成了教师应该予以考虑的重大问题。思维导图的出现,为数学教学注入新鲜血液。在数学教学体系中,教师利用思维导图将数学知识点直观而具象、系统而完整地展示给学生,学生通过思维导图而得以在脑海里建立起经过自主学习和思考归纳后的知识体系,从而既实现了教学层次方面的知识结构优化,又能够实现提高学生自主学习能力的教学需求。

例如,在进行“一个因数是两位数的乘法”的教学时,教师要总结这一课程中的知识点:有口算乘法、笔算乘法及一个因数是两位数的乘法的运算规则。一般情况下,教师都会采用举例演练、提问引导、课堂巩固的方式对学生进行知识点的讲授。但是,由于教师讲授时,例题繁多,知识杂乱,对于学生来说存在一定的理解困难。学生必定会产生一种畏难心理,并对教师产生相应的依赖心理,难以实现自主学习这一教学目标。因此,教师在进行常规的教学实践后,可以利用思维导图的方法对知识进行总结,将整节课的知识点进行一个结构上的梳理和归纳,引导学生进行更为深入的自主学习和思考,提高学生对一个因数是两位数乘法算理的理解能力。

(2)突破教学难点,提高教学质量。

在数学教学中,抽象概念的理解和逻辑关系的掌握是教学难点。抽象的概念用语言表达出来仍旧十分抽象,小学生缺乏逻辑思维能力,存在抽象概念的理解障碍。同时,相似的概念则十分容易被混淆。教师运用传统的教学讲解难以彻底解决这一教学难点,学生极易因概念的不理解或者混淆而产生知识点掌握不牢靠等一系列后续问题。而思维导图的运用,可以将那些容易混淆的知识点和概念进行对比,区别它们的异同。

思维导图 篇四

思维导图又叫心智图,是表达发射性思维的有效的图形思维工具 。它简单却又极其有效,是一种革命性的思维工具。思维导图运用图文并重的技巧,把各级主题的关系用相互隶属与相关的层级图表现出来,把主题关键词与图像、颜色等建立记忆链接。思维导图充分运用左右脑的机能,利用记忆、阅读、思维的规律,协助人们在科学与艺术、逻辑与想象之间平衡发展,从而开启人类大脑的无限潜能。   思维导图是一种将放射性思考具体化的方法。我们知道放射性思考是人类大脑的自然思考方式,每一种进入大脑的资料,不论是感觉、记忆或是想法——包括文字、数字、符码、香气、食物、线条、颜色、意象、节奏、音符等,都可以成为一个思考中心,并由此中心向外发散出成千上万的关节点,每一个关节点代表与中心主题的一个连结,而每一个连结又可以成为另一个中心主题,再向外发散出成千上万的关节点,呈现出放射性立体结构,而这些关节的连结可以视为您的记忆,也就是您的个人数据库。   思维导图绘制技巧   思维导图是有效的思维模式,应用于记忆、学习、思考等的思维“地图”,有利于人脑的扩散思维的展开。思维导图已经在全球范围得到广泛应用,新加坡教育部将思维导图列为小学必修科目,包括大量的500强企业。思维导图的创始人是东尼·博赞。中国应用思维导图大约有20多年时间。

思维导图构建框架   可以直接将书籍的目录录入到思维导图中,也可以选择比较重要的部分录入。主要的目标是将书籍中最重视的部分框架清晰的反映在思维导图中。   思维导图录入重点   将书中的重点论证部分录入思维导图,同时将自己摘录、勾画的部分录入,这个时候不必变更书中原句,简单的录入即可。这时有两种内容,第一种是和书籍框架及论证有关的,放入导图的对应分支下;第二种是与框架无关,可以在导图中建立一个“杂项”的分支,将所有内容统统扔进这个分支下。   思维导图调整方式   如果读书的目的不是为了了解作者的思路或者纯粹和作者有关的东西,那么绝对不关心作者或者本书的思维框架如何,但是在书中可能关心其中某些部分。比如《如何阅读一本书》中,关心如何做分析阅读,如何做检视阅读,如何做主题阅读,那么可能要做三个主要的分支。   思维导图论证引入   将内容和论证放入相应分枝中,完成了整体框架的构建,这时候就是该细化的时候了。   思维导图处理杂项   大家没有忘记杂项中还有很多内容吧,处理一下这些句子,有些内容可以放入前面整理出的框架中,有些东西则和全书整体框架并不相关。   思维导图内容归档   比如管理一个专门的导图,日常杂项一个导图,谈读书系列一个导图。将杂项中的内容分门别类的归入这些导图中去,不必太过在意构架和体系,可以同样在它们中建立杂项,扔进去就OK了,等到想用的时候再说,到时候不过是一个搜集资料的过程而已。同时,最好注明该条出自哪本书和页码。   思维导图细化语言   细化每个分支的逻辑性和语言。   框架已经有了,每个分支下也有了一定内容,但是每个独立分支下的逻辑性并不清楚,需要将书中原话转变成自己理解的话语,尽力简化。同时,将这些句子的逻辑关系理清,用分支的形式体现出来,这时就有了一个层次、逻辑清楚的思维导图了。

思维导图如何培养数学思维 篇五

模型准备阶段——培养学生的数学阅读、观察和分析能力

“模型应该来自情境,而学生则应该学习从情境中辨认模型,提出模型。”学会抽象概括数学模型是创造、识别、应用模型的前提。它能使学生理顺模型的来龙去脉,深刻理解数学模型的本质、特征,把握模型的衍生层次。教师应努力创设问题情境,做学生抽象数学模型的“助产师”,把学生置于研究现实的未知的问题情境之中,引导学生把数学问题提炼成简约的日常生活语言,再让学生把日常生活语言转化成数学语言,以促使学生把具体数量关系概括成一般的数量关系,使学生在探求解决问题的方法的过程中建立新的数学模型。

“模型准备”可以由教师直接提出或设计情境引入,让学生从生活现象中体会到一个比较清晰的数学问题。出示问题情境后,教师可以利用下面这个思维导图,让学生从情境中收集信息,并通过动脑想、动口说、动手做等方式,引导学生对信息进行分析、理解,培养学生的数学阅读、观察和分析能力。

模型假设阶段——培养学生的猜想、整合能力

模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,教师应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。教学时可以通过教师的引导,让学生针对问题特点和建模目的作出合理、简化的假设。

在这个环节,教师不应过早地对学生的假设进行评判,而应重点关注假设背后的思想,关注学生是否调动原有的知识经验,并引导学生在操作、证明、交流、质疑中用事实验证自己的假设,或纠正自己的错误假设,因势利导启发学生,鼓励学生积极开展思维活动。

2如何巧用思维导图的探讨

实践出真知

首先,在授课时注意课本知识点与生活的有机结合。如在学习几何图形时,可以让学生寻找生活中他们见到的图形,并让他们制作出来,让他们在具体的动手过程中去思考这些图形有什么特点。再如学习几何图形的拼接时,可以让学生自行去拼接,让他们拼接成自己喜欢的动物、房子、树木、数字、电视等等。这样在具体的知识点的教学过程中不仅可以直观地展示课本的知识点,还可以有效地激发学生的想象,从而在实践中提升自我抽象思维能力。

其次,注重知识点与生活场景之间的联系和层次。在数学教学实践过程中,我们通常会赋予这个知识点具体的生活情境,从而在具体的情境中引导学生得出相应的结论。但这种生活场景应该是生活中会出现的或者说它是有概率会发生的,即生活场景与知识点的联系要具有充分的合理性,唯有这样,才会有效激发学生去进行生活化的思考。而所谓的层次问题指的是这种生活场景一定要是学生尽可能会见到的,而不是小学生目前接触不到的生活场景。唯有这样,才可以让学生进行合理化的思考,而这样的思考才是有价值的。这样有价值的思考也才会提高学生的抽象思维能力。

从思维定向走出去

首先,培养学生独立思考的能力。教学是一个双向的过程,不仅需要教师对于知识的讲解与渗透,更需要学生自身的独立思考。因此在日常的教学活动中,要注重让学生独立思考,去思考一个题目为什么有这样的解法,去思考为什么会有乘法口诀。在平时的教学中也要多留一些有趣的、和日常生活相关的数学课后思考题,从而让学生在对于这些问题的探讨与思考中逐渐养成自我思考与探究的习惯。而这样独立思考的能力正是培养学生抽象思维能力的必备条件。

其次,形成分组讨论机制。抽象思维的培养过程需要靠具体的教学活动来完成。分组讨论机制有助于学生在自主讨论学习中汲取别人的思维模式从而能够完善自我思维。与此同时,分组讨论机制有助于拓宽学生对于同一种问题的不同理解,从而为问题的解决提供多种可能性,而对于问题的不同可能性的思考有助于学生走出自我的思维定向,进而提升自我的抽象思维能力。

思维导图如何培养数学思维 篇六

借助思维导图的方式对学习自主学习、合作探究的能力进行培养。

随着新课改的实施以及深入,对教学的教学方式有了新的要求,需要将以往将课堂知识传授为主的形式进行改变,使学生能够积极主动的进行学习,并使学生能够掌握基础知识以及基本技能,最终使学生的价值观更具正确性。借助思维导图的形式进行教学,能够使学生的主体作用得到充分的发挥,使学生的学习积极性得以调动,并能够促进学生自学能力、理解分析能力以及归纳总结能力的培养。

在实际教学过程中,教师需要充分借助思维导图的作用,改变知识枯燥乏味的特点,使学生真正拥有学习的主动权,能够真正掌握学习方法。具体实施方法为:首先,教师应该将本单元的思维导图大纲进行制作,对学习进行讲解;其次,将学生分为小组形式,借助对教材以及资料的阅读,查阅网络上所搜集的资料,为课堂学习做好准备;第三,对学习进行指导帮助,使其应用协作学习的方式,将所查找到的资料借助MindManager软件将思维导图描绘出来;最后,在课程上,将各个小组的思维导图结果进行展示,由教师做出最后的评价,针对作品中的不足,学习应该积极改进。在此学习过程中,学生也能够牢固的掌握知识。

借助思维导图的方式,使学生分析解决问题的能力得到培养。

相关学者指出,知识的意义体现在知识的用法当中,也就是说,知识的意义体现在学习分析解决问题的能力,是在实际生活中不断积累的。在学习中,学生借助数学知识对问题进行解决时必然会存在一定困难,此时就需要教师做好引导工作,借助思维导图的作用,使学生分析以及解决问题的能力得以培养。

此外,将信息技术与数学学科充分的进行结合,对思维导图进行有效的利用,就能够将数学知识间的条块分割状态转变,使其能够相互结合,形成一个整体,使知识能够相互融合,保证数学新课程的有效实施。

4提高小学生的数学思维技巧

从教学方法入手

首先,树立以思为学的目标。正确的目标方向是教学成功的开始。作为一名高素质的教师,我们要树立以思为学的目标,而不是为学而学。在具体的教学过程中,我们要减少刻板繁重的家庭作业,多布置一些思维型的题目让学生去思考,去自主探讨,而不是将学生淹没在繁重的作业中去。 其次,以感性思维引导学生。由于小学生目前的思维状态是感性多于理性,而抽象思维的提高又是一个极为缓慢的过程,所以作为一名合格的人民教师,我们需要在这个过程中运用更为感性直观的方法去引导学生去理解那些抽象的概念、公式、方法。

从而在我们有意识的引导中逐步提高学生的抽象思维能力。 最后,形成奖励竞争机制。小学生的学习是以引导型为主的,这种有意识的引导需要靠一定的竞争奖励机制来完成,因为这样可以激发学生的学习动力,这种动力正是学生自我思考与探讨需要的条件。只有在这种机制中,学生才会在我们有效的引导中可以不断地去思考、去探讨,从而提高他们自己的抽象思维能力。

培养学生的实践操作能力

只有学生动手参与学生才能记得牢,因为在学生的操作过程中不仅是身体的动作,而是与大脑的思维活动紧密联系在一起的,大脑支配人体的各个器官进行协调的工作。操作中学生不但要观察、分析、比较、还要进行抽象,概括,从中发展思维。如教学“长方体和正方体体积的认识”时,我让学生通过观察,触摸,数一数长方体有几个面,学生用多种方法数出长方体有6个面。

这时,我继续追问:“这些面有什么特点?”有的学生用手摸,有的学生用尺量,有的把两块长方体拼在一起进行比较,有的学生把长方体相对的边沿着外框画在纸上比较,等等。通过动手实际操作初步感知长方体相对的面的大小、形状一样,掌握了长方体的特征,通过实践探索得出的知识学生印象深刻,记得扎实,正是这样学生在思维中操作,在动手中思维,并通过语言将过程“内化”为思维,使思维得到发展。

数学中如何应用思维导图 篇七

一、利用思维导图优化知识结构,使教学更加严谨,提高学生的自主学习能力

小学数学新课程标准明确提出了新课程理念下的教学目标,要培养学生自主学习和合作学习的能力,落实学生在课堂上的主体地位,实现课堂的人性化管理。基于这样的课程理念,我们小学数学教师必须采用科学合理的教学方法,优化知识结构,充分挖掘教材的深度和广大,培养学生严谨的学习态度,实现自主学习。

其中,思维导图法就是很好的教学方法。很多数学知识点通过思维导图能够系统、全面地展示出来,给学生直观、易懂、严谨的知识体系,能有效培养学生自主学习能力。

比如,在进行“一个因数是两位数的乘法”的教学中,课程中涉及不同形式的口算乘法、笔算乘法及其应用,还有常见的数量关系。教师通过例题板演、小篇子训练等方式进行每一个知识点的讲解,但由于的知识点较多,教师出示的例题也相应增多,致使部分学生理解上有一定困难。教师在讲完本节课的基础知识后,可利用思维导图的方法进行总结,给学生直观、全面的知识展示,提高学生对一个因数是两位数的乘法的算理的理解能力,为学生提供自主学习的方法。我设计的思维导图如见附图。

二、利用思维导图突破概念教学难点,提高学生自主认知能力和辨析能力

小学生对抽象数学概念的理解具有一定的难度,尤其是那些相近的知识点。教师如果还是采用传统的灌输式教学法,学生在理解和认知上很容易出现混淆,教学效果不佳。为有效解决这一教学难点,教师可以采用思维导图法进行教学,将那些容易产生混淆的知识点进行导图设计。通过图文并茂的方式,可直观解决教学难点,提高学生的自主认知能力和辨析能力。

比如,在进行“认识多边形”的教学中,本节课涉及很多四边形,主要有:长方形、正方形、平行四边形、梯形。小学生在一节课中要认清这么多的新图形,确实不是一件简单的事情。教师在教学之初可以在黑板上画出每一种图形,边画边告知学生该图形的名称,再将这些图形之间的关系进行导图设置,使学生直观理解每种图形之间的关系,进而有助于学生理解多边形的概念和联系,不至于出现混淆现象,提高学生自主认知和辨析能力。

三、利用思维导图进行单元复习,提高学生的总结归纳能力和解决实际问题的能力

教学的重要环节之一就是复习,复习也是提高教学质量的关键一环,尤其是对每个单元知识的复习更是搞好教学的前提。通过单元复习提高学生的总结归纳能力和自主学习能力,可以帮助学生分析和处理实际问题,提高学生的数学素养。为很好地解决这一教学难题,教师可利用思维导图法进行单元复习,从而有利于学生系统地掌握本单元的基础知识。学生通过全局把握提高了解决实际问题的能力,收到很好教学效果。

比如,在进行“长方体和正方体”的复习课教学中,长方体和正方体的知识点较多,彼此之间相互交叉的知识点也很多,学生掌握起来具有很大的难度,很容易出现混淆现象。尤其是求面积和体积等问题,学生经常在求面积时用体积公式,或者是求体积时用面积公式,造成实际运用时不得要领。

教师在复习时可引导学生利用思维导图法进行复习,帮相学生梳理有关长方体和正方体有关知识点,如概念、特征、表面积、体积、容积等。导图设计如下。这样教学,能够帮助学生自己梳理每一个单元的知识点,提高学生解决实践问题能力和总结归纳能力,以便在解决问题时得心应手。

总之,基于小学生的知识水平和抽象思维能力,运用思维导图法进行课堂教学的实施,可以极大地刺激学生的求知欲望,活跃课堂氛围,提高学生的理解和归纳等能力,更有利于提高学生的思维能力和自主学习能力,全面提高小学生的数学素养。

在今后的教学实践中,我们小学数学教师更应结合教学实际,设计更科学实用的思维导图,做到简单易懂,力求学生能够自己运用导图进行自主学习和合作学习,为学生的终身发展奠定基础。

七年级数学有理数思维导图 篇八

1.同号相加,取相同符号,并把绝对值相加。

2.绝对值不等的异号相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

4.相反数相加结果一定得0。

注意

一是确定结果的符号;二是求结果的绝对值。 在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则。在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了。 多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。

减法

法则

有理数减法法则:减去一个数,等于加上这个数的相反数。其中:两变:减法运算变加法运算,减数变成它的相反数做加数。一不变:被减数不变。可以表示成: a-b=a+(-b)。

乘法

法则

(1)两数相乘,同号为正,异号为负,并把绝对值相乘。例:(-5)×(-3)=15 (-6)×4=-24 。

(2)任何数同0相乘,都得0。 例:0×1=0

(3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负;当负因数有非零偶数个数时,积为正。并把其绝对值相乘。例:(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数

(4)几个数相乘,有一个因数为0时,积为0。例:3×(-2)×0=0 。

(5)乘积为1的两个有理数互为倒数(reciprocal)。(乘积为-1的互为负倒数)例如,—3与—1/3,—3/8与—8/3。

除法

法则

(1)除以一个数等于乘以这个数的倒数。(注意:0没有倒数)

(2)两数相除,同号为正,异号为负,并把绝对值相除。

(3)0除以任何一个不等于0的数,都等于0。

注意:

0在任何条件下都不能做除数。

你也可以在好范文网搜索更多本站小编为你整理的其他小学数学教研计划思维导图(精品多篇)范文。

word该篇DOC格式小学数学教研计划思维导图(精品多篇)范文,共有10835个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
小学数学教研计划思维导图(精品多篇)下载
小学数学教研计划思维导图(精品多篇).doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无