这里能搜索到更多你想要的范文→
当前位置:好范文网 > 实用范文 > 其他范文 >

《同底数幂的乘法》教学案例(多篇)

发布时间:2023-08-19 04:00:35 审核编辑:本站小编下载该Word文档收藏本文

编辑:《同底数幂的乘法》教学案例(多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

《同底数幂的乘法》教学案例(多篇)

《同底数幂的乘法》教案 篇一

一、素质教育目标

1、理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质。

2、能够熟练运用性质进行计算。

3、通过推导运算性质训练学生的抽象思维能力。

4、通过用文字概括运算性质,提高学生数学语言的表达能力。

5、通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度。

二、学法引导

1、教学方法:尝试指导法、探究法。

2、学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解。

三、重点难点及解决办法

(一)重点

幂的运算性质。

(二)难点

有关字母的广泛含义及性质的正确使用。

(三)解决办法

注意对前提条件的判别,合理应用性质解题。

四、课时安排

一课时。

五、教具学具准备

投影仪、自制胶片。

六、师生互动活动设计

1、复习幂的意义,并由此引入同底数幂的乘法。

2、通过一组同底数幂的乘法的练习,努力探究其规律,在探究过程中理解公式的意义。

3、教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握。

七、教学步骤

(-)明确目标

本节课主要学习同底数幂的乘法的性质。

(二)整体感知

让学生在复习幂的意义的基础之上探究同底数幂的乘法的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加。

(三)教学过程

1.创设情境,复习导入

表示的意义是什么?其中 、、分别叫做什么?

师生活动:学生回答( 叫底数, 叫指数, 叫做幂),同时,教师板书。

提问: 表示什么? 可以写成什么形式?______________

答案: ;

【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备。

2.尝试解题,探索规律

(1)式子 的意义是什么?(2)这个积中的两个因式有何特点?

学生回答:(1) 与 的积(2)底数相同

引出本课内容:这节课我们就在复习乘方的意义的基础上,学习像 这样的同底数幂的乘法运算。

请同学们先根据自己的理解,解答下面3个小题。

; 。

学生活动:学生自己思考完成,然后一个(或几个)学生回答结果。

【教法说明】

(1)让学生在已有知识的基础上感知规律的存在性、一般性,从而建立对同底数幂乘法法则的感性认识。

(2)培养学生运用已有知识探索新知识的热情。

(3)体现学生的主体作用。

3.导向深入,揭示规律

计算 的过程就是

也就是

那么 ,当 都是正整数时,如何计算呢?

( 都是正整数)

(板书)

学生活动:同桌研究讨论,并试着推导得出结论。

师生共同总结: ( 都是正整数)

教师把结论写在黑板上。

请同学们试着用文字概括这个性质:

同底数幂相乘 底数不变、指数相加

运算形式 运算方法

提出问题:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?

学生活动:观察 ( 都是正整数)

【教法说明】注意对学生从特殊到一般的认识方法的培养,揭示新规律时,强调学生的积极参与。

4.尝试反馈,理解新知

学生活动:学生在练习本上完成例1、例2,由2个学生板演完成之生,由学生判断板演是否正确。

教师活动:统计做题正确的人数,同时给予肯定或鼓励。

注意问题:例2(2)中第一个 的指数是1,这是学生做题时易出问题之处。

【教法说明】学生在认识的基础上,尝试运用性质,加深对性质的理解。学生做题正确与否,教师均应以鼓励为主,增强学生学习的信心。

5.反馈练习,巩固知识

【教法说明】此组题旨在增强学生应变能力和解题灵活性。

(四)总结、扩展

学生活动:1.同底数幂相乘,底数_____________,指数____________.

2、由学生说出本节体会最深的是哪些?

【教学说明】在1中强调不变、相加。学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力。

《同底数幂的乘法》教案 篇二

学习目标:

(1)经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义;

(2)了解同底数幂乘法的运算性质,并能解决一些实际问题。

(3)在进一步体会幂的意义时,学习同底幂乘法的运算性质,提高解决问题的能力。

学习重点:同底数幂的乘法运算法则。

学习难点:同底数幂的乘法运算法则的灵活运用。

一、课前延伸

1、式子103,a5各表示什么意思?

2、指出下列各式子的底数和指数,并计算其结果。

?) -52 32 (-3)2 -34 ( ) ( 341212

3、化简下列各式:

(1)3a3+ 2a3

(2)3a3- 3a2- a3

【课内探究】

二、创设情境,感受新知

问题:一种电子计算机每秒可进行103次运算,它工作 103 秒可进行

多少次运算?

1、探究算法

103×103=(10×10×10)×(10×10×10)( ) =10×10×10×10×10×10 ( )

=106 ( )

2、合作学习,寻找规律

① 53×52② 108×103 ③ 97×910 9m×9n ⑤a5×a63、定义法则

①、你能根据规律猜出答案吗?

猜想:am·an=? (m、n都是正整数)

②口说无凭,写出计算过程,证明你的猜想是正确的 am·an=

思考

(1)等号左边是什么运算?

(2)等号两边的底数有什么关系?

(3)等号两边的指数有什么关系?

(4)公式中的底数a可以表示什么?

(5)当三个以上同底数幂相乘时,上述法则成立吗?

三、应用新知,体验成功

例1、计算下列各式,结果用幂的形式表示:

(1)x2·x5 (2)(a+b)·(a+b)6

(3)2×24×23 (4)xm·x3m+1

【小试牛刀】1、口答题:

① 78×73 ②x3〃x5

③(a-b)2〃(a-b) ④a · a3 · a5 · a6

2、下面的计算对不对?如果不对,怎样改正?

(1)b5·b5= 2b5 ( ) (2)b5 + b5 = b10 ( )

(3)x5·x5 = x25 ( ) (4)y5· y5 = 2y10 ( )

(5)c·c3 =c3 ( ) (6)m + m3 =m4 ( )

四、拓展训练,激发情智

例2计算下列各式,结果用幂的形式表示:

①(-3)2×(-3)3 ②34×(-3)3

③(m-n)3 〃(n-m)2 ④3×33×81

【更上一层】1、填空。

(1)x5 ·( )= x 8

(2)xm ·( )=x3m

(3)如果an-2an+1=a11,则n=

2、已知:am=2, an=3.求am+n =?。

例3光的速度为3×105千米/秒,太阳光照射到地球上约需5×102秒,问:地球离太阳多远?

【检验自我】课本117页练习1、2题

五、归纳小结

【温馨提示】几个须注意的地方:

(1)在计算时不能直接写出结果

(2)不能把同底数幂相乘的运算法则和其它法则混淆。

(3)进一步了解从特殊到一般和从一般到特殊的重要思想。

【课后提升】

配套练习册《同底数幂的乘法与除法》第一课时

《同底数幂的乘法》教学案例 篇三

同底数幂的乘法说课稿

一、教材分析

同底数幂的乘法这节课要求学生推导出同底数幂的乘法的运算性质,理解和掌握性质的特点,熟练运用运算性质解决问题。在教学中改变以往单纯的模仿与记忆的模式,体现以学生为主体,引导学生动手实践,自主探索与合作交流的教学理念。通过练习形成良好的应用意识。

同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的关于幂的一个基本性质,又是幂的三个性质中最基本的一个性质,学好了同底数幂的乘法,对其他两个性质以及整式乘法和除法的学习能形成正迁移。

因此,同底数幂的乘法性质既是有理数幂的乘法的推广, 又是整式乘法和除法的学习的重要基础,在本章中具有举足轻重的地位和作用。

二、教学目标

(一),知识技能

1.理解同知识技能底数幂的乘法法则

2.运用同底数幂的乘法法则解决一些实际问题

(二),能力训练

1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力

2.通过"同底数幂的乘法法则"的推导和应用,使学生领会特殊-----一般-----特殊的认知规律

(三),情感价值

体味科学的思想方法,接受数学情感的熏陶,激发学生探究的兴趣

教学重点: 正确理解同底数幂的乘法法则

教学难点:正确理解和应用同底数幂的乘法法则

教学手段:为了使性质的推导过程更形象和清晰,所以借助多媒体来进行教学。

三、教学方法分析

1.教法分析

根据教学目标,要让学生经历探索性质的过程,因此,在性质的推导过程,采用让学生尝试的教学方法,以问题的形式,引导学生进行思考,探索,再通过交流,讨论,发现性质,使学生的学习过程成为再发现,再创造的过程,使学生在学习的过程中掌握学习与研究的方法,养成良好的学习习惯,从而学会学习,学会思考,学会合作,学会创新;

对于推导出的性质及其语言叙述,则可以一种较轻松而又富有挑战性的方式指导他们理解记忆,在教学方法上采用学生讨论与教师的讲授相结合。而在整个教学中,分层次地渗透了归纳和演绎的数学思想方法,以培养学生养成良好的思维习惯。

2.学法指导

教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此,在教学中要不断指导学生学会学习。

本节课主要是教给学生"动手做,动脑想,多合作,大胆猜,会验证" 的研讨式学习方法。这样做增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径和思考问题的方法,使学生真正成为学习的主体。以及通过动手实践,理解记忆和强化训练的学法掌握本节课内容。

四、教学过程

一。创设情景 提出问题

运用多媒体投影引例,引导学生观察由问题而得到式子特点:105×107=

二。探索交流 发现新知

(一),提出新任务:

思考:an 表示的意义是什么 其中a,n,an分 别叫做什么

问题:1.25表示什么

2.10×10×10×10×10 可以写成什么形式

思考:1式子103×102的意义是什么

2这个式子中的两个因式有何特点

3.a3×a2=

过程中注意了解学生对幂的意义的理解程度,要求学生说明每一步的理由。

思考:请同学们观察下面各题左右两边,底数,指数 有什么关系

103 ×102 = 10( ) 23 ×22 = 2( ) a3× a2 = a( )

(二),提高任务难度:

引导学生观察计算前后底数和指数的关系,并鼓励其运用自己的语言加以描述。

猜想:am · an= (当m,n都是正整数)

(三),提出挑战:能否用一个比较简洁的式子概括出你所发现的规律

(四),提出更高挑战:要求学生从幂的意义这个角度加以解释,说明,验证它的正确性。

然后要求学生按步骤独立思考和探索:

1.比一比:识记运算性质

2.回想一下你是用什么办法记住的 用这个办法能否持久 你能否提出一个更有建设性的改进措施

猜想:am · an= (当m,n都是正整数)

对运算性质的剖析 条件:①乘法 ②同底数幂

结果:①底数不变 ②指数相加 (目的是为了化解难点)

3.再识记。在理解的基础上,结合性质的特点和语言 叙述,有目的地提取记忆。

4.提问:"你认为这个性质的应用,应特别注意什么 "

(五),应用练习促进深化

1.计算:(1)107 ×104 ; (2)(-x)2 · (-x)5 .

2.计算:(1)23×24×25 (2)y · y2 · y3

你能回答开始提出问题吗 105×107等于多少呢

练习设计:

.巩固练习:1计算:(抢答) 2计算: 3.下面的计算对不对 如果不对,怎样改正

.变式训练:填空:

.思考题 :1.计算: 2.填空:

五、提炼小结 完善结构

"通过本节课的学习,你在知识上有哪些收获,你学到了哪些方法 "引导学生自主总结,组织学生互相交流各自的收获与体会,成功与失败。

六、布置作业 延伸学习

同底数幂的乘法 篇四

一、教学目标

1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算。

2.培养学生运用公式熟练进行计算的能力。

3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志。

4.渗透数学公式的结构美、和谐美。

二、学法引导

1.教学方法:讲授法、练习法。

2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法。

三、重点·难点及解决办法

(一)重点

同底数幂的运算性质。

(二)难点

同底数幂运算性质的灵活运用。

(三)解决办法

在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别。

四、课时安排

一课时。

五、教具学具准备

投影仪、胶片。

六、师生互动活动设计

1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则。

2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节。

3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力。

七、教学步骤

(-)明确目标

本节课重点是熟练运用同底数暴的乘法运算公式。

(二)整体感知

要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用: 外,还要善于根据题目的结构特征,学会它们的逆向应用: ,当然这个难度较大。在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆。乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同。

(三)教学过程

1.创设情境、复习导入

(1)叙述同底数幂乘法法则并用字母表示。

(2)指出下列运算的错误,并说出正确结果。

强调:①中 的指数不为0,指数相加时不要漏加 的指数。②不是同类项不能合并。③同底数幂相乘,指数相加不是相乘。

(3)填空:

① ,

② , ,

2.探索新知,讲授新课

例1  计算:

(1) (2) (3)

解:(1)原式

(2)原式

(3)原式

例2  计算:

(1) (2)

(3) (4)

解:(1)原式

(2)原式

(3)原式

(4)

或原式

提问: 和 相等吗?

3.巩固熟练

(1)P93  练习(下)1,2.

(2)计算:

① ②

③ ④

(3)错误辨析:

计算:① ( 是正整数)

解:

说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.

解:原式

说明: 与 不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为

(四)总结、扩展

底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题。

八、布置作业

P94  A组3~5;P95  B组1~2.

参考答案

略。

九、板书设计

投影幂

例1 例2 练习

小结:

《同底数幂的乘法》教案 篇五

教学目标:

理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到般再到特殊的认知规律.

教学重点与难点:

正确理解同底数幂的乘法法则以及适用范围.

教学过程:

一、回顾幂的相关知识

an的意义:an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.

二、创设情境,感觉新知

问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?

学生分析,总结结果

1012×103=()×(10×10×10)==1015.

通过观察可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.

学生动手:

计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)

教师引导学生注意观察计算前后底数和指数的关系,并能用自己的语言描述.

得到结论:

(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.

(2)一般性结论:am·an表示同底数幂的乘法.根据幂的意义可得:

am·an=()·()=()=am+n

am·an=am+n(m、n都是正整数),即为:同底数幂相乘,底数不变,指数相加

三、小结:

同底数幂的乘法的运算法则:同底数幂相乘,底数不变,指数相加.

注意两点:

一是必须是同底数幂的乘法才能运用这个性质;

二是运用这个性质计算时一定是底数不变,指数相加,即am·an=am+n

《同底数幂的乘法》教案 篇六

教学目标

在了解同底数幂乘法意义的基础上掌握法则,会进行同底数幂的乘法基本运算。

在推导法则的过程中,培养观察、概括与抽象的能力。

通过对具体事例的观察和分析,归纳、总结出同底数幂乘法的法则,培养学生归纳、总结,以及从特殊到一般的抽象概括等思维能力。

让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

重点难点

重点

同底数幂相乘的法则的推理过程及运用

难点

同底数幂相乘的运算法则的推理过程

教学过程

一、温故知新

1、表示什么意义?(是乘方运算,表示10个2相乘;也可以用来表示运算的结果)

2、下列四个式子① ,② ,③ ④ 中,运算结果是 的有哪些?你能说明理由吗?(学生通过讨论,明确两个幂只有当底数相同时才可以乘起来,同时初步感受计算的方法)

3、光的传播速度是每秒 米,若一年以 秒计算,那么光走一年的路程是多少米呢?

学生列出式子 。这个式子怎样运算呢?解决这个问题的关键是弄清楚两个同底数幂相乘的一般方法,下面我们就来探索同底数幂的乘法法则。

二、新课讲解

探究新知

你能计算出 吗?

学生解答,教师板书

那么 等于多少呢?更一般的, 等于多少呢?

学生回答,教师板书

你发现运算的方法了吗?

师生共同概括归纳出同底数幂乘法的法则:

同底数幂相乘,底数不变,指数相加。

用公式表示是: (、n都是正整数)

动脑筋

当3个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?

学生思考并讨论解答,最后教师总结: (,n,p都是正整数)

三、典例剖析

例1 计算:(1) ;(2)

分析:直接运用公式计算,教师板书计算过程,强调初学时要注意弄清楚计算的步骤。

例2 计算:(1) ;(2)

让学生独立完成。这题意在进一步训练运用法则进行计算,注意观察学生是否会用法则进行计算,点评时要强调对法则的运用。

例3 计算:(1) ;(2)

学生解答并讨论,教师注意拓展学生对法则的运用,培养符号演算的能力,指出公式中的底数可以是具体的数,也可以是字母或式子表示的数,提高学生的运算能力。

四、课堂练习

基础训练:

1、计算:

(1) ;(2) ;(3) ;(4)

2、计算:

(1) ;(2) ;(3) ;(4)

(学生解答各题,教师组织学生互相批改,对学生出错比较多的地方做讲解和变式训练)

提高训练

3、计算 ;(2)

4、制作拉面需将长条形面团摔匀拉伸后对折,并不断重复若干次这组动作。 随着不断地对折, 面条根数不断增加。 若一碗面约有64 根面条,则面团需要对折多少次? 若一个拉面店一天能卖出2 048 碗拉面,用底数为2的幂表示拉面的总根数。

(用以提升学生运算的灵活性,提高学习兴趣。)

五、小结

师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。(如:对法则的理解,解决了什么问题,体会从特殊到一般探索规律的数学思想等等)

六、布置作业

教材P40 第1题,P41 第12题

同底数幂的乘法 篇七

课  题:8.1  同底数幂的乘法

学习目标:理解同底数幂相乘的法则并会运用。

学习重点:同底数幂的乘法运算

学习难点:同底数幂的乘法法则的推导

学习过程:

一、忆旧迎新

1、你能用式子说明乘方的意义吗?

(1)把下列各式写成幂的形式

①10×10×10   ②3×3×3×3   ③a•a•a•a•a   ④ a•a•a…a

n个a

(2)指出式子an的各部分名称

2、问题:“神威1”计算机每秒可进行3.84×1012次运算,它工作1h(3.6×103s)

共进行了多少次运算?

3.84×1012×3.6×103 = 3.84×3.6×1012×103 = ?

解决上述问题,关键在于求出:1012×103 = ?即怎样计算同底数幂的乘法。同学们现在做这题可能会感到困难,相信大家学过下面的内容后就可以解决。

二、自学探究:探究同底数幂乘法法则

1、做一做:(完成下表)

算 式 运算过程 结果

22×23 (2×2)×(2×2×2) 25

103×104

a2•a3

a4•a5

2、观察上表,你发现了什么?

(1)以上四个算式的共同特点是同底数幂相乘,计算结果的底数、指数,与已知算式中的底数、指数之间的关系是______________________

(2)根据以上发现,你能直接写出以下各算式的结果吗?

1012•108 =_______ (13 )10•(13 )7 =______  a5•a12 =______

(- 15 )m •(- 15 )n  =_________

(3)得出结论:一般地,如果字母m、n都是正整数,那么

am•an = (aaa…a)•(a•a•a…a)(______的意义)

___个a   ___个a

= a•a•a…a  (乘法结合律) = am+n (_______的意义)

_____个a

幂的运算性质1:am•an = am+n   (m、n是正整数)

你能用语言描述这个性质吗?___________________________

(4)注意:这里的底数a可以是任意的实数,也可以是单项式或多项式

(5)议一议:m、n、p是正整数,你会计算am•an •ap吗?

3、法则运用

例1、计算: (1)   (2)(-3)2×(-3)7  (3)106•105•10

(4)x3•xm       (5)(a+b)4•(a+b)     (6)x2•(-x)5

想一想:(1)上述6个小题中,是否都是同底数幂相乘?哪些是?哪些不是?(2)不是同底数幂的题底数有何特点?还能用同底数幂的乘法法则进行运算吗?(3)在第(3)(5)题中的最后一因数10与(a+b)是否没有指数?

例2、计算:(1)y4•y-y2•y3    (2)a4•a3•a2 + a6•a2•a

分析:这里是同底数幂相乘与整式加减的混合运算,按照先乘法后加减的顺序进行。

三、反馈练习:

1、课本p47练习1、2

2、计算:(1)2×24-22×23         (2)m7•m+m3•m2•m3

四、学习提升:

1、想一想:26=24•2x   x=_______你能把am+n分解成两个幂的积吗?

用一用:2m=3 , 2n=4, 求2m+n的值。

2、(1)若xm-2•xm+2=x10,m=_______       (2)22x+1=8,则x=________

五、学后反思:

1、本节课你学到了什么?

2、学过本节你的问题有哪些?你的困惑是什么?

你也可以在好范文网搜索更多本站小编为你整理的其他《同底数幂的乘法》教学案例(多篇)范文。

word该篇DOC格式《同底数幂的乘法》教学案例(多篇)范文,共有9191个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
《同底数幂的乘法》教学案例(多篇)下载
《同底数幂的乘法》教学案例(多篇).doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无