【编辑】高一数学必修一复习资料整理【精品多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
高一数学知识的复习整理 篇一
如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?
平行或异面。
若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?
无数条;平行。
如果直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那么直线a、b的位置关系如何?为什么?
平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。
综上分析,在直线a与平面α平行的条件下我们可以得到什么结论?
如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
高一数学复习资料整理 篇二
1、函数的零点
(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
2、二次函数y=ax2+bx+c(a>0)的图象与零点的关系
3、二分法
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
4、函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点。在写函数零点时,所写的一定是一个数字,而不是一个坐标。
5、对函数零点存在的判断中,必须强调:
(1)f(x)在[a,b]上连续;
(2)f(a)·f(b)<0;
(3)在(a,b)内存在零点。
这是零点存在的一个充分条件,但不必要。
6、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。
你也可以在好范文网搜索更多本站小编为你整理的其他高一数学必修一复习资料整理【精品多篇】范文。