【说明】七年级数学知识点:提公因式法知识点【通用多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
七年级数学知识点:提公因式法知识点 篇一
1.类比法
在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把15分解成3×5,把42分解成2×3×7.
在第七章我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法.
2.因式分解的概念:
计算出其结果.
如:m(a+b+c)=ma+mb+mc
2xy(x-2xy+1)=2x2y-4x2y2+2xy
(a+b)(a-b)=a2-b2
(a+b)(m+n)=am+an+bm+bn
(x-5)(2-x)=-x2+7x-10 等等.
它们有什么共同的特点?
特点:左边,整式×整式;右边,是多项式.
可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.
定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
如:因式分解:ma+mb+mc=m(a+b+c).
整式乘法:m(a+b+c)=ma+mb+mc.
说出因式分解与整式乘法的联系与区别.
联系:同样是由几个相同的整式组成的等式.
区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法.两者是方向相反的恒等变形,二者是一个式子的不同表现形式,一个是多项式的表现形式,一个是两个或几个因式积的表现形式.
例1 下列各式从左到右哪些是因式分解?(投影)
(1)x2-x=x(x-1) (√)
(2)a(a-b)=a2-ab (×)
(3)(a+3)(a-3)=a2-9 (×)
(4)a2-2a+1=a(a-2)+1 (×)
(5)x2-4x+4=(x-2)2 (√)
下面我们学习几种常见的因式分解方法.
3.提公因式法:
我们看多项式:ma+mb+mc
它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式.
注意:公因式是各项都含有的公共的因式.
又如:a是多项式a2-a各项的公因式.
ab是多项式5a2b-ab2各项的公因式.
2mn是多项式4m2np-2mn2q各项的公因式.
根据乘法的分配律,可得m(a+b+c)=ma+mb+mc,
逆变形,便得到多项式ma+mb+mc的因式分解形式ma+mb+mc=m(a+b+c).
这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式 ma+mb+mc写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法.
定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多 项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
显然,由定义可知,提公因式法的关键是如何正确地寻找公因式.
找出确定公因式的万法:
(1)公因式的系数应取各项系数的最大公约数:
(2)字母取各项的相同字母,而且各字母的指数取次数例2 指出下列各多项式中各项的公因式:
(1)ax+ay+a (a)
(2)3mx-6mx2 (3mx)
(3)4a2+10ah (2a)
(4)x2y+xy2 (xy)
(5)12xyz-9x2y2 (3xy)
例3 把8a3b2-12ab3c分解因式.
分析:分两步:第一步,找出公因式;第二步,提公因式.
先引导学生按确定公因式的方法找出多项式的公因式4ab2.
解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a2-3bc).
说明:
(1)应特别强调确定公因式的两个条件以免漏取.
(2)开始讲提公因式法时,最好把公因式单独写出.
①以显提醒;
③强调提公因式;
③强调因式分解.
例4 把3x2-6xy+x 分解因式.
分析:先引导学生找出公因式x,强调多项式中x=x·1.
解:3x2-6xy+x
=x·3x-x·6y+x·1
=x(3x-6y+1).
说明:当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,提公因式后剩下的应是1,1作为项的系数通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,提公因式后的因式的项数应与原多项式的项数一样,这样可以检查是否漏项.
4.把下列各式分解因式:
(l)2πR+2πr;
(2)
(3)3x3+6x2;
(4)21a2+7a;
(5)15a2+25ab2;
(6)x2y+xy2-xy.
例5 把-4m3+16m2-26m分解因式.
分析:此多项式第一项的系数是负数,与前面两例不同,应先把它转化为前面的情形便可以因式分解了,所以应先提负号转化,然后再提公因式,提“-”号时,注意添括号法则.
解:-4m3+16m2-26m
=-(4m3-16m2+26m)
=-2m(2m2-8m+13).
说明:通过此例可以看出应用提公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则提出负号,此时一定要把每一项都变号;然后再提公因式.
5.把下列各式分解因式:
(1)-15ax-20a;
(2)-25x8+125x16;
(3)-a3b2+a2b3;
(4)-x3y3-x2y2-xy;
(5)-3ma3+6ma2-12ma;
七年级数学知识点:提公因式法知识点 篇二
初中阶段是我们一生中学习的“黄金时期”。不光愉快的过新学期,也要面对一件重要的事情那就是学习。小编为大家提供了提公因式法知识点,希望对大家有所帮助。
◆因式分解——把一个多项式变成几个整式的积的形式;(化和为积)
注意:
1、因式分解对象是多项式;
2、因式分解必须进行到每一个多项式因式不能再分解为止;
3、可运用因式分解与整式乘法的互逆关系检验因式分解的正确性;
◆分解因式的作用
分解因式是一种重要的代数恒等变形,它有着广泛的应用,常见的用途有化简多项式和进行简便运算,恰当的运用分解因式,常可以使计算化繁为简。
◆分解因式的一些原则
(1)提公因式优先的原则。即一个多项式的各项若有公因式,分解时应首先提取公因式。
(2)分解彻底的原则。即分解因式必须进行到每一个多项式因式都再不能分解为止。
(3)首项为负的添括号原则。即如果多项式的首项系数为负,应先添上带“—”号的括号,并遵循添括号法则。
◆因式分解的首要方法—提公因式法
1、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
2、提公因式法:如果一个多项式的各项含有公因式,可以逆用乘法分配律,把各项共有的因式提出以分解因式的方法,叫做提公因式法。
3、使用提取公因式法应注意几点:
(1)提取的“公因式”可以是数、单项式,也可以是一个多项式,是一个整体。
(2)公因式必须是多项式的每一项都有的因式,在提取公因式时,要把这些公共的因式全部找出来,并提到括号外面去,才算完成了提取公因式。(找最高公因式)
(3)对多项式中的每一项的数字系数,在提取时要提出这些数字系数的最大公约数,各项都含有相同的字母,要提取相同字母的指数的最低指数。
◆提公因式法分解因式的关键:
1、确定最高公因式;(各项系数的最大公约数与相同因式的最低次幂之积)
2、提出公因式后另一因式的确定;(用原多项式的每一项分别除以公因式)
七年级数学知识点:提公因式法知识点 篇三
性质:
一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,且各字母的指数取次数最低的;取相同的多项式,且多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
概念:
提公因式法一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
【提取公因式法的解题步骤】
提取公因式法是因式分解的一种基本方法。如果多项式的各项有公因式,可以把这个公因式提取出来作为多项式的一个因式,提取公因式后的式子放在括号里,作为另一个因式。
提取公因式是乘法分配律的逆运算,其最简形式为:ma+mb+mc=m(a+b+c)。
提取公因式法分解因式的解题步骤是怎样的?
利用提公因式法分解因式时,一般分两步进行:
(1)提公因式。
把各项中相同字母或因式的最低次幂的积作为公因式提出来;当系数为整数时,还要把它们的最大公约数也提出来,作为公因式的系数;当多项式首项符号为负时,还要提出负号。
(2)用公因式分别去除多项式的每一项,把所得的商的代数和作为另一个因式,与公因式写成积的形式。
由于题目形式千变万化,解题时也不能生搬硬套。例如,有的需要先对题目适当整理变形;有的分解因式后多项式因式中有同类项的还要进行合并化简;还有的提取公因式后能用其他方法继续分解。
其中,以(a-b)*(a+b)为例
【练习题】
1.多项式8x3y2-12xy3z的公因式是_________.
2.多项式-6ab2+18a2b2-12a3b2c的公因式是( )
A.-6ab2c
B.-ab2
C.-6ab2
D.-6a3b2c
3.下列用提公因式法因式分解正确的是( )
A.12abc-9a2b2=3abc(4-3ab)
B.3x2y-3xy+6y=3y(x2-x+2y)
C.-a2+ab-ac=-a(a-b+c)
D.x2y+5xy-y=y(x2+5x)
【参考答案】
1.4xy2
2.C
3.C
七年级数学知识点:提公因式法知识点 篇四
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。
2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。
2.将常数项分解成满足要求的两个因数积的多次尝试,
一般步骤:
① 列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数。
3.将原多项式分解成(x+q)(x+p)的形式。
七年级数学知识点:提公因式法知识点 篇五
1、整理知识结构
提公因式法:关键是确定公因式
因式分解平方差公式:______________________
运用公式法:
完全平方公式:_____________________
2、分解因式:
⑴4a4-100
⑵a4-2a2b2+b4
3、思考:
⑴在解答这两题的过程中,你用到了哪些公式?
⑵你认为(2a2+10)(2a2-10)和(a2-b2)2这两个结果是因式分解的最终结果吗?若不是,你认为还可以怎样分解?
⑶怎样避免出现上述分解不完全的情况呢?
说明:公式中a、b可以是具体的数,也可以是任意的单项式和多项式。多项式的因式分解,要根据多项式的特点,选择使用恰当的方法去分解,对于有些多项式,有时需同时用到几种不同的方法,才能分解完全。
4、问题研讨:
1、例题一(准备好,跟着老师一起做!)
把下列各式分解因式:⑴18a2-50⑵2x2y-8xy+8y
⑶a2(x-y)-b2(x-y)
2、例题二(有困难,大家一起讨论吧!)
把下列各式分解因式:⑴a4-16⑵81x4-72x2y2+16y4
3、因式分解的。方法步骤:
⑴如果多项式各项有公因式,应先提公因式,再进一步分解。
⑵分解因式必须分解到每个多项式的因式都不能再分解为止。
⑶因式分解的结果必须是几个整式的积的形式。
注意:先提取公因式后利用公式。
注意:两个公式先后套用。分解因式必须分解到每个多项式的因式都不能再分解为止。
即:“一提”、“二套”、“三查”。说明:将一个多项式分解因式时,首先要观察被分解的多项式是否有公因式,若有,就要先提供因式,再观察另一个因式特点,进而发现其能否用公式法继续分解。
5、练习检测与拓展延伸:
1、巩固练习
⑴把下列各式分解因式:
①3ax2-3ay4
②-2xy-x2--好范文网§www.haoword.com y2
③3ax2+6axy+3ay2
⑵把下列各式分解因式:
①x4-81
②(x2-2y)2-(1-2y)2
③x4-2x2+1
④x4-8x2y2+16y4
2、提升训练
⑴已知2x+y=6、x-3y=1,求14y(x-3y)2-4(3y-x)3的值。
⑵已知a+b=5、ab=3,求代数式a3b+2a2b2+ab3的值。
6、总结:
进行多项式因式分解时,必须把每一个因式都分解到不能再分为止。
七年级数学知识点:提公因式法知识点 篇六
多项式 ab+ac中,各项有相同的因式吗?多项式 3x2+x呢?多项式mb2+nb–b呢?
结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.
多项式2x2+6x3中各项的公因式是什么?那多项式2x2y+6x3y2中各项的公因式是什么?
结论:
(1)各项系数是整数,系数的最大公约数是公因式的系数;
(2)各项都含有的字母的最低次幂的积是公因式的字母部分;
(3)公因式的系数与公因式字母部分的积是这个多项式的公因式.
将以下多项式写成几个因式的乘积的形式:
(1)ab+ac
(2)x2+4x
(3)mb2+nb–b
如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
将下列多项式进行分解因式:
(1)3x+
(2)7x –21
(3) 8a3b2–12ab3c+ab
(4)–24x3+12x2-28x
提取公因式的步骤:
(1)找公因式;
(2)提公因式.
易出现的问题:
(1)第二题只提出7x作为公因式
(2)第(3)题中的最后一项提出ab后,漏掉了“+1”;
(3)第(4)题提出“–”时,后面的因式不是每一项都变号.
提醒:
(1)各项都含有的字母的最低次幂的积是公因式的字母部分;
(2)因式分解后括号内的多项式的项数与原多项式的项数是否相同;
(3)如果多项式的首项为“–”时,则先提取“–”号,然后提取其它公因式;
(4)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等.
找出下列各多项式的公因式:
(1)4x+8y
(2)am+an
(3)48mn–24m2n3
(4)a2b–2ab2+ab
你也可以在好范文网搜索更多本站小编为你整理的其他七年级数学知识点:提公因式法知识点【通用多篇】范文。