说明:小学数学学习计划(通用多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
数学学习计划 篇一
学习安排:
第一周(5月26日——30日)学习内容:分数的意义,分数与除法的关系,分数大小的比较,周一,三,五收看空中课堂五年级数学(共3节)
第二周(6月2日——6日)学习内容:真分数和假分数,假分数与带分数或整数的互化,分数的基本性质,周二,四收看空中课堂五年级数学(共2节)
第三周(6月9日——13日)学习内容:约分,通分,分数和小数的互化,周一,三,五收看空中课堂五年级数学(共3节)
第四周(6月16日——20日)学习内容:分数与小数的互化,复习,第五单元同分母分数加减法,周二,四收看空中课堂五年级数学(共2节)
第五周(6月23日——27日)学习内容:异分母分数加减法,分数加减混合运算,复习。周一,三,五收看空中课堂五年级数学(共3节)
第六周(6月30日——7月4日)学习内容:总复习第一,二,三单元,课本P125-P127,P130-P131
第七周(7月7日——7月11日)学习内容:总复习第四,五单元,课本P127-P130
具体要求:
根据实际情况定时收看空中课堂,培养自己独立学习的习惯,形成适合自己的学习方法。学习时不仅要关注结果,更要关注学习过程,注意思路和方法的学习。遇到疑问要用心钻研,或打电话向老师和同学请教。
学习建议:
第四单元分数的意义和性质是系统学习分数的重要单元,是学习分数四则运算和应用题的基础,务必认真学好。
1,理解分数的意义;分子,分母和分数单位的含义;分数与除法的关系;会比较分数的大小;认识真分数,假分数和带分数;掌握整数,带分数与假分数互化的方法。
2,理解和掌握分数的基本性质;能比较熟练的进行约分和通分。
3,理解分数和小数的关系,比较熟练的进行分小互化。
4,初步树立实践第一,矛盾转化的观点,培养良好的学习习惯。
具体安排:
第一周(5月26日——30日)分数的意义:5月26日——27日,教材P75-P79
注意要点:
理解单位“1”的含义。要注意“平均分”的含义。
分数既可以表示一个具体数量,也可以表示两个数之间的倍数关系。例如:教材P81练一练,教材P77例一。
理解分子,分母,分数单位的概念时,尤其要注意分数单位这个概念。分数单位实际上是单位“1”的若干分之一,不同分母的分数有不同的分数单位,任何一个分数都是由若干个分数单位组成的。
作业练习:课本P77练一练,P77-79练习12
掌握分母相同,分子不同的两个分数比大小。
掌握分子相同,分母不同的两个分数比大小。
学习新课,一方面借助图形直观的进行比较,另一方面也应结合分数意义和分数单位的比较,归纳出结论。学习例5和例6重点了解比较大小的方法,学习P102练一练,要说出比较分数大小的依据。
小学数学学习计划 篇二
一、关于课题研究的背景和意义
1、课题研究的产生背景
我国数学教育历来重视基本知识和基本技能,与世界上其他国家相比,我国中小学生数学功底扎实得到了普遍的赞誉。但是,几次大规模的国际数学教育调查表明,我国中小学生运用数学知识解决实际问题的能力十分薄弱,几乎排在十几个被调查国家的最后,与排名榜首的我国中小学生的逻辑思维和运算能力相比,形成强烈的反差。
《新课标》要求学生自主探究、合作学习,这些在公开教学活动中时有所见,但在日常的教学活动中却是难得一见,因为小学生特别是低年级学生入学年龄小,很贪玩,学习的目的不明确,主动性不够、积极性不强,几乎是教师逼着或是家长压着来学习的。
2、课题研究的现实意义
研究基于普遍反映学生的学习不主动,对数学知识不能系统的进行整理和建构。学生自主学习几乎成了一句空话。阅读看的也只是看一些作文或是童话之类的,对数学阅读的学生更是凤毛麟角。这与现代社会所要求的构建学习型社会、终生学习的要求是相悖的。长期以往一个人的成长,一个民族的发展势必会受影响。
二、理论依据
1、建构主义理论:
建构主义理论认为,知识不是通过教师传授得到,学习不应被看成对于教师所授予知识的被动接受,而是学习者在一定的情境即社会文化背景下,借助他人(包括教师和学习伙伴)的帮助,利用必要的学习资料,通过意义建构的方式而获得。即学习者以自身已有的知识和经验为基础的主动的建构活动。也就是教师要把学习的自主权交给学生,提供学生更多的建构属于他们自己的空间的条件,提供更多的发挥他们自己的思维方式和解决策略的机会,提供更多的解释和评价他们自己的思维结果的权利。这就对教学设计提出了新的要求,也就是说,在建构主义学习环境下,教学设计不仅要考虑教学目标分析,还要考虑有利于学生建构意义的情境的创设问题,“以学生为中心,在整个教学过程中由教师起组织者、指导者、帮助者和促进者的作用,利用情境、协作、会话等学习环境要素充分发挥学生的主动性、积极性和首创精神,最终达到使学生有效地实现对当前所学知识的意义建构的目的。”在这种模式中,学生是知识意义的主动建构者;教师是教学过程的组织者、指导者、意义建构的帮助者、促进者;教材所提供的知识不再是教师传授的内容,而是学生主动建构意义的对象;媒体也不再是帮助教师传授知识的手段、方法,而是用来创设情境、进行协作学习和会话交流,即作为学生主动学习、协作式探索的认知工具。
2、开放教育的教学观:
开放的课堂教学就应把课堂真正还给学生,学生既是课堂的主体,也是课堂的主人,教师是设置教学情境,提供教学素材,引导同学们自主探究的引路人。
3、动态生成的教学观:
一般来说,在以往的课堂教学中,最常出现的是“教大于学”,其次是“教等于学”,最容易被忽视的是“学大于教”和“有教无学”。理想的课堂教学应当建立在“学大于教”的逻辑起点上,这是现代教学应当追求的境界。美国心理学家布鲁纳的“学科结构理论”,前苏联教育家沙塔洛夫的“纲要信号理论”等,都是以“学大于教”为出发点和归宿的。
三、相关研究综述
"学生是学习的主体",这是教师普遍了解的一个教学原则。但在教育教学中却没有很好地贯彻与实施。面对新课程,我们必须牢记陶行知先生所言:"先生的责任不在于教,而在教学生学"。应该改变以往那种让学生跟在自己后面亦步亦趋的习惯,引导学生自主学习。学生学习的主战场在课堂,课堂教学是一个双边活动过程,只有营造浓厚的自主学习氛围,唤起学生的主体意识,激起学习需要,学生才能真正去调动自身的学习潜能,进行自主学习,真正成为课堂学习的主人。
数学学习计划 篇三
学科:数学
年级:七年级 审核:
内容:沪科版七下6.2实数(1) 课型:新授 时间:
学习目标:
1、使学生了解无理数和实数的意义能用夹值法求一个数的算术平方根的近似值;.
2、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数夹值法及估计一个(无理)数的大小的思想。
学习重点:无理数及实数的概念
学习难点;实数概念、分类.
学习过程:
一、学习准备
1、写出有理数两种分类图示
2、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
二、合作探究
1、阅读课本第11页的思考,想一想怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?动手试一试,并绘出示意图
方法1: 方法2:
2、我们已经知道:正数x满足 =a,则称x是a的算术平方根.当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如, =4;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?例如课本第11页的大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?阅读课本第11、12页夹值法探究 ,尝试探究 ,完成填空:
因为( )2= <3, ( )2= >3
所以 < <
因为( )2= <3, ( )2= >3
所以 < <
因为( )2= <3, ( )2= >3
所以 < <
因为( )2= <3, ( )2= >3
所以 < <
像上面这样逐步逼近,我们可以得到: ≈
3、用计算器得出 , 的结果,再把结果平方,你有什么发现?多试试几个。
4、什么是无理数?例举我们学过的一些无理数
5、无理数有几种分类方法,写出图示。
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试
1、判断:
①实数不是有理数就是无理数。( ) ②无理数都是无限不循环小数。( )
③无理数都是无限小数。 ( ) ④带根号的数都是无理数。( )
⑤无理数一定都带根号。( )
2、实数 , , ,3.1416, , ,0.2020020002……(每两个2之间多一个零)中,无理数的个数有( )
A.2个 B.3个 C. 4个 D.5个
3、下列说法中正确的是( )
A、A.无理数是开方开不尽的数B.无限小数不能化成分数
C.无限不循环小数是无理数D.一个负数的立方根是无理数
4、将0,3.14, , ,π, , , , , , 0.7070070007…分别填入相应的集合内。
有理数集合{ … };正分数集合{ … }
无理数集合{ … }; 负整数集合{ … }
实数集合{ … }。
拓 展 训 练:
1、在实数范围内,下列各式一定不成立的有( )
(1) =0; (2) +a=0; (3) + =0; (4) =0.
A.1个 B.2个 C.3个 D.4个
2、阅读课本第18页“ 不是有理数”的证明。
3、根据右图拼图的启示:
(1)计算 + =________;
(2)计算 + =________;
(3)计算 + =________.
数学小知识——祖冲之和π值的计算
祖冲之(429~500),中国南北朝时期著名的数学家和天文学家.他在数学上的主要贡献是:
1.推算出圆周率π在不足近似值3.1415926和过剩近似值3.1415927之间、精确到小数点后7位.
2.和祖暅一起解决了球体积的计算问题,得到球体积公式,并提出了“幂势既同、则积不容异”的原理.
祖冲之还找到了两个近似于 的分数值,一个是 ,称为约率,另一个是 ,称为幂率,后者是祖冲之独创的,因此,后人称之为“祖率”,以纪念这位数学家.
你也可以在好范文网搜索更多本站小编为你整理的其他小学数学学习计划(通用多篇)范文。