水温控制系统
摘要
现如今,人们的生活越来越强调智能化以及低碳化,无论是智能化还是低碳化,生活在人们都希望自己的电器越来越智能,即能按照人们的意愿,低功耗的实现功能。水温控制作为人们生活以及工业的重要组成部分,能否实现智能化以及低功耗化十分重要。水温控制系统以STC89C51作为核心的温度控制系统,将DS18B20作为温度感应器,可直接反馈数字量的温度信息并可以调节精度;以继电器以及螺旋加热管作为加热模块;以发光二级管以及蜂鸣器作为声光告警装置;以数码管作为温度显示模块。程序上利用PID调节算法,多次调节其中参数,使得温度控制更加精确。该系统具有简单、成本低、质量安全可靠的特点。相信无论是在生活还是生产中都会有不错的应用前景。
关键词 智能化 温度控制 STC89C51 DS18B20 PID调节算法
一.任务以及要求
设计并制作一个水温自动控制系统,水温可以在一定范围内由人工设定,可以实现自动报警功能。
1.基本内容如下:
(1)温度设定范围为:40~90℃,最小区分度为 1℃,标定温度≤1℃。
(2)环境温度降低时温度控制的静态误差≤1℃。
(3)用10进制数码管显示水的实际温度。
2.发挥要求:
(1)温度控制范围扩大,最小区分度减小。
(2)温度控制的静态误差≤0.2℃。
(3)特色与创新。
二.方案设计及其论证
水温的控制,必须先精确地获取温度,所以温度传感器的选择就非常重要。通常,温度所测量的是模拟量,模拟量的转换涉及到A/D的转换。温度传感器把温度传送给处理器核心,处理器核心经过分析,判断是否满足处理的条件,进行相关的处理。可实现的动作包括以下几项:达到设定温度,进行声光报警;温度低,进行加热处理。其中温度的设定就要利用到键盘。声光报警就需要用到发光二级管以及蜂鸣器。经以上分析,可以将温度控制系统分为以下几个模块:
1.温度传感器
温度传感器应具有精度足够高、处理速度足够快、体积小等特点。采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 更重要的是采用该温度传感器后不用采用A/D转换。节省了大量的工作量。
2.键盘显示
按键主要涉及到温度的调节以及模式的转换。显示部分主要涉及到水温的实时显示,以及功能模式的显示。按任务功能需求采用独立键盘,并且利用MCU对键盘进行扫描。这种方案既能很好的控制键盘及显示,又为MCU大大的减少了程序的复杂性,而且具有体积小,简单易做的特点。显示部分按照任务要求采用4位数码管设计,来显示水温以及工作模式等。也具有简单、可靠的特点。
3.CPU核心
CPU主要控制水温以及其他模块的协调工作。是该水温控制系统的核心。根据对方案的分析,采用简单易用的STC89C52单片机,其内部有4KB单元的程序存储器,不需外部扩展程序存储器,而且它的I/O口也足够本次设计的要求。具有简单方便、成本低以及可靠的特点。
经以上分析,只要合理设计电路以及正确编写程序,以上几个模块在MCU以及程序的调节下能协调工作,共同完成水温的控制,从而达到任务要求。
三.理论分析与计算
各个模块要在MCU的调节下合理有序的工作,那么系统必须采用合理高效的控制系统。这就要涉及到过程控制,过程控制指对生产过程的某一或某些物理参数进行的自动控制。过程控制可分为:模拟控制系统、微机过程控制系统以及数字控制系统DDC。模拟控制系统中被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。微机过程控制系统以微型计算机作为控制器。控制规律的实现,是通过软件来完成的。改变控制规律,只要改变相应的程序即可。
现如今在生产以及实践中运用最多的是DDC(Direct Digital Congtrol)系统:
图3-1 DDC系统构成框图
DDC(Direct Digital Congtrol)系统是计算机用于过程控制的最典型的一种系统。微型计算机通过过程输入通道对一个或多个物理量进行检测,并根据确定的控制规律(算法)进行计算,通过输出通道直接去控制执行机构,使各被控量达到预定的要求。由于计算机的决策直接作用于过程,故称为直接数字控制。
其中控制规律即为PID调节,本系统中为软件实现。涉及到的理论计算如下:
1.模拟PID控制规律的离散化
表一.模拟PID控制规律的数字化公式
模拟形式 |
离散化形式 |
|
|
|
|
|
|
2.数字PID控制器的差分方程
式中 为比例项
为积分项
为微分项
四.系统设计方案
1.工作模式
本着智能化以及按照题目要求,将系统设计有以下两个个工作模式:A.测定水温以及显示水温;B.设定水温并保温;其中A为默认工作状态,即开机工作状态,工作内容为实时测量水温并在数码管上显示。B为设定温度并保温。由用户设定一定的温度,系统自动工作,加热到设定温度后声光报警,声光报警装置可独立开关,如果不切断电源或切换模式,系统将自动竟然保温模式。其中温度的设定有键盘控制。不管在那种工作模式,一旦复位键按下,将回到默认工作模式。在B工作模式下并且显示实际水温时,按下加键可以显示用户设定温度。根据以上的分析总结如下:
2.电路设计
根据以上的分析,可以将整个系统分为以下几个部分:单片机最小系统,测温电路,功率电路,交流过零检测电路,显示电路,系统框图如下:
最小系统采用将C52MCU以及独立键盘、数码管集成在一块板上的工作方式。 其中P0口接数码管。其他包括复位电路、独立键盘、晶振电路。其电路如下图5-1所示:
图5-1 最小系统
(2)18B20测温电路
测温电路是使用DS18b20数字式温度传感器,它无需其他的外加电路,直接输出数字量,可直接与单片机通信,读取测温数据,电路十分简单。它能够达到0.5℃的固有分辨率,使用读取温度的暂存寄存器的方法还能达到0.2℃以上的精度。DS18B20温度传感器只有三根外引线:单线数据传输总线端口DQ ,外供电源线VDD,共用地线GND。外部供电方式(VDD接+5V,且数据传输总线接4.7k的上拉电阻,其接口电路如图5-2所示:
图5-2 控制电路
(3)功率电路
功率电路主要是继电器模块,包括三极管以及电阻组成控制部分,与MCU进行通信。PNP管的导通控制着继电器的常闭触点的接通与否。继电器常闭触点连接着外部加热电路。其中继电器的电感部分连接着二极管,起着引流保护PNP管的作用。其电路如下图6-1:
图6-1 功率电路
(4)声光报警电路
声光报警电路采用蜂鸣器以及二极管串联的形式,通过PNP三极管控制电路通断。利用P3.7来与MCU通信。如下图6-2:
图6-2 声光报警电路
(5)红外接收装置
该部分为创新部分,采用红外接收装置来接受红外遥控器的信号,这样就可以通过无线方式进行信息的传递。通过遥控器可以设定温度,切换工作模式等。工作原理为红外遥控器产生红外信号,红外接收头接收到红外信号后,其内部电路把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。最终将数字信号传输到MCU,MCU做出相应的反应。其电路如下图7-1:
图7-1 红外接收装置
五.软件设计说明
(1)总流程
本系统是采用查询方式来显示和控制温度的。其中加入了红外以及键盘等的其他控制器件语句。总流程图如下图7-2:
图 7-2 总流程图
(2)工作时序
工作时序由初始化模块、测温、显示等模块组成。具体工作时序如下图8-1:
图 8-1 工作时序
(3)主要程序
1.主函数如下:
#include
#include
unsigned char choice;
unsigned char key_down;
#include"DS18B20.H"
#include"PID.H"
#include"XIANSHI.H"
#include"KEYSCAN.H"
#include"INFRARED.H"
void main()
{
unsigned int tmp;
unsigned char counter=0;
P2 |= 0x07; //初始化按键
PIDBEGIN(); //初始化PID
init_infrared(); //初始化红外
ReadTemperature(); //预读一次温度
hello(); //显示HELLO,屏蔽85°C
while(1)//检测红外线
{
if(IrOK==1&&Im[0]==0x00)
proc_infrared();
if(counter-- == 0)
{
tmp = ReadTemperature();
counter = 20;
}
key_scan();//扫描键盘
proc_key();//刷新显示缓存
if(choice==0)
update_disbuf(tmp);
else
update_disbuf(set_tmpbuf);
if(pid_on)
compare_temper();
else
{
high_time=0;
low_time=100;
}
}
}
2. PID算法温度控制程序
#ifndef _PID_H__
#define _PID_H__
#include
#include
#include
struct PID {
unsigned int SetPoint; // 设定目标 Desired Value
unsigned int Proportion; // 比例常数 Proportional Const
unsigned int Integral; // 积分常数 Integral Const
unsigned int Derivative; // 微分常数 Derivative Const
unsigned int LastError; // Error[-1]
unsigned int PrevError; // Error[-2]
unsigned int SumError; // Sums of Errors
}
struct PID spid; // PID Control Structure
unsigned int rout; // PID Response (Output)
unsigned int rin; // PID Feedback (Input)
sbit output=P3^4;
unsigned char high_time,low_time,count=0;//占空比调节参数
unsigned char set_temper=33;
void PIDInit (struct PID *pp)
{
memset ( pp,0,sizeof(struct PID));
}
unsigned int PIDCalc( struct PID *pp, unsigned int NextPoint )
{
unsigned int dError,Error;
Error = pp->SetPoint - NextPoint; // 偏差
pp->SumError += Error; // 积分
dError = pp->LastError - pp->PrevError; // 当前微分
pp->PrevError = pp->LastError;
pp->LastError = Error;
return (pp->Proportion * Error//比例
+ pp->Integral * pp->SumError //积分项
+ pp->Derivative * dError); // 微分项
}
/***********************************************************
温度比较处理子程序
***********************************************************/
compare_temper()
{
unsigned char i; //EA=0;
if(set_temper>temper)
{
if(set_temper-temper>2)
{
high_time=100;
low_time=0;
}
else
{
for(i=0;i<10;i++)
{ get_temper();
rin = s; // Read Input
rout = PIDCalc ( &spid,rin ); // Perform PID Interation }
if (high_time<=100)
high_time=(unsigned char)(rout/1600);
else
high_time=100;
low_time= (100-high_time);
} }
else if(set_temper<=temper)
{
if(temper-set_temper>0)
{
high_time=0;
low_time=100;
}
else
{
for(i=0;i<10;i++)
{ get_temper();
rin = s; // Read Input
rout = PIDCalc ( &spid,rin ); // Perform PID Interation }
if (high_time<100)
high_time=(unsigned char)(rout/20000);
else
high_time=0;
low_time= (100-high_time);
//EA=1;
} } }
/*****************************************************
T0中断服务子程序,用于控制电平的翻转 ,40us*100=4ms周期
******************************************************/
void serve_T0() interrupt 1 using 1
{
if(++count<=(high_time))
output=1;
else if(count<=100)
{
output=0;
}
else
count=0;
TH0=0x2f;
TL0=0xe0;
}
void PIDBEGIN()
{
TMOD=0x01;
TH0=0x2f;
TL0=0x40;
EA=1;
ET0=1;
TR0=1;
high_time=50;
low_time=50;
PIDInit ( &spid ); // Initialize Structure
spid.Proportion = 10; // Set PID Coefficients
spid.Integral = 8;
spid.Derivative =6;
spid.SetPoint = 100; // Set PID Setpoint
}
#endif
3.DS18B20子程序
#ifndef __DS18B20_H__
#define __DS18B20_H__
sbit DQ = P3^5; //定义通信端口
unsigned int s;
unsigned char temper;
//晶振22MHz
void delay_18B20(unsigned int i)
{
while(i--);
}
//初始化函数
Init_DS18B20(void)
{
unsigned char x=0;
DQ = 1; //DQ复位
delay_18B20(4); //稍做延时
DQ = 0; //单片机将DQ拉低
delay_18B20(100); //精确延时 大于 480us
DQ = 1; //拉高总线
delay_18B20(40);
}
//读一个字节
ReadOneChar(void)
{
unsigned char i=0;
unsigned char dat = 0;
for (i=8;i>0;i--)
{
DQ = 0; // 给脉冲信号
dat>>=1;
DQ = 1; // 给脉冲信号
if(DQ)
dat|=0x80;
delay_18B20(10);
}
return(dat);
}
WriteOneChar(unsigned char dat)//写一个字节
{
unsigned char i=0;
for (i=8; i>0; i--)
{
DQ = 0;
DQ = dat&0x01;
delay_18B20(10);
DQ = 1;
dat>>=1;
}
}
ReadTemperature(void)//读取温度
{
unsigned char a=0;
unsigned char b=0;
unsigned int t=0;
//EA = 0;
Init_DS18B20();
WriteOneChar(0xCC); //跳过读序号列号的操作
WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器) 前两个就是温度
a=ReadOneChar();
b=ReadOneChar();
Init_DS18B20();//启动下一次温度转换
WriteOneChar(0xCC); // 跳过读序号列号的操作
WriteOneChar(0x44); // 启动温度转换
t=(b*256+a)*25;
b=(b<<4)&0x7f;
s=(unsigned int)(a&0x1f);
s=(s*100)/16;
a=a>>4;
temper=a|b;
return(t>>2);
}
#endif
六.测试方法与数据
测量方式:接上系统的加热装置,装入25.06摄氏度室温的水,通过键盘或者红外遥控器设定控温温度。记录调节时间、超调温度、稳态温度波动幅度等。
测量条件:环境温度26.5℃(附:加热电炉功率600W)。
测量结果:如表二所示。在此仅以数值的方式给出测量结果。调节时间按温度进入设定温度±0.5℃范围时计算。
表二 测量结果数据
设定温度/℃ |
35 |
45 |
65 |
75 |
调节时间/min |
1.15 |
1.12 |
1.58 |
1.06 |
超调温度/℃ |
35.06 |
45.12 |
64.87 |
74.87 |
稳态误差/℃ |
0.06 |
0.12 |
0.13 |
0.13 |
六.测试结果分析
由测试结果和上表数据得出:
(1)温度设定范围为30~95℃(在40~90范围内),最小区分度达到0. 01℃(小于1℃)以上,标定温度值也符合设计要求。
(2)由于采用了PID控制,在环境温度降低时温度控制的静态误差小于0.5℃(精度高于设计要求)。
(3)用数码管来显示水的实际温度和设定温度值,显示很稳定。
(4 )采用了PID控制,当设定温度突变(由40℃提高到60℃)时,经过多次调试知道,当P=10;I=8;D=6时系统具有最小的调节时间和超调量。
(5)当温度稳定时,温度控制的静态误差≤0.5℃。
(6)创新部分为添加了红外遥控装置。可代替键盘部分功能,且能更方便的调节温度等。
(7)经过多次测试和改进,该系统各方面参数都达到和超过设计参数,完成了既定目标。
参考文献:
[1] 李桢、赵宏权,《PID调节概念及基本原理》[J],《科技信息(科学教研)》,07,29期
[2]郭天祥,《51单片机C语言教程》[M],北京:电子工业出版社,2009