第1篇:不等式单元教学设计
不等式单元教学设计范文
在教学工作者实际的教学活动中,时常需要编写教学设计,教学设计是一个系统化规划教学系统的过程。怎样写教学设计才更能起到其作用呢?下面是小编整理的不等式单元教学设计范文,希望对大家有所帮助。
〖教学目标〗
在本学段,学生将经历从实际问题中建立不等关系,进而抽象出不等式的过程,体会不等式和方程一样,都是刻画现实世界中同类量之间关系的重要数学模型,同时进一步发展学生的符号感。
(一)知识目标
1、能够根据具体问题中的大小关系了解不等式的意义。
2、理解什么是不等式成立,掌握不等式是否成立的判定方法。
3、能依题意准确迅速地列出相应的不等式。体会现实生活中存在着大量的不等关系,学习不等式的有关知识是生活和工作的需要。
(二)能力目 标
1、培养学生运用类比方法研究相关内容的能力。
2、训练学生运用所学知识解决实际问题的能力。
(三)情感目标
1、通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识。
2、通过 不等式的学习,渗透具有不等量关系的数学美。
〖教学重点〗
能依题意准确迅速地列出相应的不等式。
〖教学难点〗
理解符号“≥”“ ≤”的含义,理解什么是不等式成立。
〖教学过程〗
一、课前布置
1、浏览课本P2~21,了解本章结构。
自学:阅读课本P2~P4,试着做一做本节练习,提出在自学中发现的问题。
2、查找“不等号的由来”
备注: 不等号的由来。
①现实世界中存在着大量的不等 关系,如何用符号表示呢? 为了寻求一套表示“大于”或“小于”的符号,数学家们绞尽脑汁。1631年,英国数学家哈里奥特首先创用符号“>”表示“大于”,“<”表示“小于”,这就是现在通用的大于号和小于号。与哈里奥特同时代的数学家们也创造了一些表示大 小关系的符号,但都因书写起来十分繁琐而被淘汰。
②后来,人们在表达不等关系时,常把等式作为不等式的特殊情况来处理。在许多情况下,要用到一个数(或量)大于或等于另 一个数(或量),此时就把“>”和“=”有机地结合起来得到符号“≥”,读做“大于或等于”,有时也称为“不小于”。同样,把符号“≤”读做“小于或等于”,有时也称为“不大于”。
那么如何理解符号“≥”“≤”的含义呢?用“≥”表示“>”或 “=”,即两者必居其一,不要求同时满足。例如 ≥0,其中只有“>”成立,“=”就不成立。同样“≤”也有类似的情况。
③因此有人把a>b,b<a这样的不等式叫做严格不等式,把形如a≥b,b≤a的不等式叫做不严格不等式。< p="">现代数学中又用符号“≮”表示“不小于”,用“≯”表示“不大于”。有了这些符号,在表示不等关系时,就非常得心应手了。
二、师生互动
和学生一起进行知识梳理
(一)由师生一起交流“不等号的由来”
① ,引出学习目标——认识不等式。
1、引起动机:
教师配合课本“观察与思考”“一起探究”等 内容提问:用数学式子要如何表示小卡车赶超大卡车?
2、学生进行讨论并回 答 。
3、教师举例说明:
数学符号“>、<、≥、≤、≠”称为不等号,而含有这些符号的式子就称为不等式。
4。结合自己的旧经验,让学生认识“≤”所代表的意思。
教师说明:
在小学时我们学过“小于”的符号,也就是说如果“a小于b”,我们可以记为“a<b”。 而a≤b”则读做“a小于或等于b”,也就表示“a比b小,而且a有可能等于b”。
5、仿照上面说明由学生进行“≥”的介绍。
6、教师举例提问:
如果我们要比较两数的大小关系时,可能会有几种情形?
(当我们比较两数的大小关系时,下面三种情形只有一种会成立,即 a<b,a=b或a>b)
7、老师提问:如果我们只知道“a不大于b”,那该如何用不等号来表 示呢?
(a不大于b表示a小于b且a有可能等于b,所以我们可以记录成a≤b)
8、仿照此题,引导学生了解“a不小于b”及“a不等于b”所代表的意义。
教师归纳说明:不等式的意义
不等式表示现实世界中同类量的不等关系。在有理数大小的比较中,我们常用不等号连接两个或两个以上的有理数,如—3>—5、不等式含有不等 号,常见的不等号有五种,其读法及意义如下:
(1)“>”读作“大于”,表示其左边的量比右边的量大。
(2)“<”读作“小于”,表示其左边的量比右边的量小。
(3)“≥”读作“大于等于”,即“不小于”,表示其左边的量大于或等于右边。
(4)“≤”读作“小于等于”,即“不大于”,表示其左边的量小于或等于右边。
(5)“≠”读作“不等于”,它说明两个量之间的关系是不相等的,但不能明确哪个大,哪个小。
(二)用不等式表示数量关系
关键是明确问题中常用的表示不等关系词语的意义,并注意隐含在具体的情境中的不等关系。
补充例1。 下面列出的不等式中,正确的是 ( )
(A)a不是负数,可表示成a>0m
(B)x不大于3,可表示成x<3
(C)m与4的差是负数,可表示成m—4<0
(D)x与2的'和是非负数,可表示成x+2>0
解析:用不等式表示下列数量关系,关键是能用代数式准确地表示出有关的数量,并掌握"不大于"、“不超过”、“是非负数”等词语的正确含义及表示符号。
因为 a不是负数,可表示成a≥0;x不大于3,应表示成x≤3;x与2的和是非负数应表示成x+2≥0,所以 只有(C)正确。 故本题应选(C)。
(三)不等式成立的意义
对于含有未知数的不等式来说,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立;当未知数取某些值时,不等式的左、右两边 不符合不等号所表示的大小关系,我们说不等式不成立。强调用“≥”表示“>”或“=” ,即两者必居其一,不要求同时满足。例如 ≥0,其中只有“>”成立,“=”就不成立。
三、补充练习
作业:课本P4习题
5分钟练习
1、“x的2倍与3的和是非负数”列成不等式为( )
A、2x+3≥0 B。2x+3>0 C。2x+3≤0 D。2x+3<0
2、几个人分若干个苹果,若每人3个还余5个,若去掉1人,则每人4个还有剩余。设有x个人,可列不等式为___________。
〖分层作业〗
基础知识
1、判断下列各式哪些是等式、哪些是不等式、哪些既不是等式也不是不等式。
①x+y
②3x>7
③5=2x+3
④x2≥0
⑤2x-3y=1
⑥52
2、用适当符号表示下列关系。
(1)a的7 倍与15的和比b的3倍大;
(2)a是非正数;
3、在-1,0, 1,3,7,100中哪些能使不等式x+1<2成立?
综合运用
4、通过测量一棵树的树围,(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5 m的地方作为测量部位,某树栽种时的树围为5 cm,以后树围每年增加约3 cm。这棵树至少生长多少年其树围才能超过2.4 m?请你列出关系式。
5、燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域。已知 导火线的燃烧速度为0.02 m/s,人离开的速度为4 m/s,导火线的长x(m)应满足怎样的关系式?请你列出。
第2篇:不等式单元教学设计
这个网站不等式单元教学设计范文有很多,送你一篇。
§9.1 不等式教学设计 教材分析:
本节内容主要有:不等式及其解集、不等式的性质。教材首先以实际问题为例,结合问题中的不等关系,引出不等式及其解集的概念;然后类比一元一次方程,引出一元一次不等式的概念.为进一步讨论不等式的解法,教材接着对不等式的性质进行了讨论,得出不等式的三个性质,并运用它们解简单的不等式.解不等式就是求出对其中未知数的大小的限制,有了这样的目标,再加上对不等式性质的认识,解不等式的方法就能很自然的产生.这一节的框架结构与一元一次方程的相应部分类似,教学中可以类比方程、等式的性质来讨论不等式、不等式的性质等.【课时分配】2课时 §9.1.1不等式及其解集 【教学重点与难点】
教学重点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上.教学难点:正确理解不等式解集的意义.【教学目标】
1.知道不等式概念,能正确表示不等式的解集;
2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想.【教学方法】
采用启发诱导、实例探究、小组合作的教学方法,揭示知识的发生和形成过程.这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力.【教学过程】
一、创设情境 导入新课
(设计说明:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,激发他们的学习兴趣。)
问题:
1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?
2、一辆匀速行驶的汽车在11:20时距离A地50千米。要在12:00以前驶过A地,车速应该具备什么条件? 分析:若设车速为每小时x千米,能用一个式子表示吗? 从时间上看,这个车速行驶50千米所用时间不到小时,列式为:;从路程上看,以这个车速行驶小时的路程要超过50千米,列式为:.(教学说明:问题1中,原来的平衡状态被破坏了,产生了一种不等关系;问题2中汽车当然是跑得越快越好,但显然汽车的速度又必须在某一个速度以上。如何表示这两种状态呢?我们知道相等关系可以用等式来表示,那么,不等关系又怎样表示呢?引导学生列出,两个式子,像这样的式子叫做不等式,这节课我们来研究不等式的相关知识,由此导入新课。)
二、师生互动,探索新知
(一)不等式、一元一次不等式的概念
1、不等式的定义
问题1:请同学们举出一些不等式的例子,试着给出不等式的定义.如:5〉3,-1〈0,x≠0等都是不等式。 用“<”或“>”表示大小关系的式子叫做不等式;用“≠”表示不等关系的式子也是不等式。
问题2:用不等式表示下列数量关系:
①a比1大;②x的4倍与5的和是负数;③a是非负数;④x与4的和最多为6;
学生容易列出:①a〉1;②4x+5〈0;③a0;④x+46.其中③④可能有点困难,在学生独立思考的基础上,相互讨论得出正确答案。
补充说明:用“”、“”表示不等关系的式子也是不等式。 问题3:下列式子中哪些是不等式? (1)a+b=b+a (2) -3>-5 (3)2m≠n (4)x+3〈6 (5)x1 (6)2x-3 很明显(2)、(3)、(4)、(5)是不等式。注意:有些不等式含有未知数,有些不含未知数。
(教学说明:通过实例让学生对不等式有个初步感知,在有了感性认识的基础上举出不等式的例子,再给出不等式的定义,由具体到抽象,层层递进,符合学生的认知规律。为了使不等式的定义更完善,出示了问题2,教师要特别说明“”、“”的含义。
五种不等号的读法及意义:
(1)“≠”读作“不等于”,它说明两个量之间的关系是不相等的,但不能明确哪个大哪个小;
(2)“>”读作“大于”,表示其左边的量比右边的量大; (3)“<”读作“小于”,表示其左边的量比右边的量小;
(4)“≥”读作“大于或等于”,即“不小于”,表示左边“不小于”右边; (5)“≤”读作“小于或等于”,即“不大于”,表示左边“不大于”右边.)
2、一元一次不等式
上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.
(教学说明:
1、一元一次不等式与一元一次方程有很多类似的地方,所以这里采取类比教学的方法学习一元一次不等式;
2、让学生在上述不等式中找出一元一次不等式,特别注意:不是一元一次不等式,因为未知数x在分母中,通过后面有关分式的学习可知,这里x的次数是-1.)
(二)不等式的解、不等式的解集和解不等式
问题1:当x分别取下列数值时,不等式x+3〈6是否都成立? -4, 3.5, 4, -2.5, 3, 0, 2.9 经过学生验证得出并不是所有的数都适合上述不等式.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解。如上面问题中-4,-2.5,0,2.9均是不等式x+3〈6的解,而3.5,4,3则不是不等式x+3〈6的解。
问题2:你能找出不等式x+3〈6的其它解吗?它到底有多少个解?你从中发现了什么规律? 讨论后得出:
用小于3的任何数替代x,不等式x+3〈6 均成立;用大于3或等于3的任何数替代x,不等式x+3〈6均不成立,这就是说,任何一个小于3的数都是不等式x+3〈6的解,这样的解有无数个.因此x〈3表示了能使不等式x+3〈6成立的x的取值范围,叫做不等式x+3〈6的解的集合,简称不等式x+3〈6的解集,记作x〈3.最后请学生总结出不等式的解集及解不等式的概念: 一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.
(教学说明:让学生充分发表意见,并通过计算、动手验证、动脑思考,初步体会不等式解的意义以及不等式解与方程解的不同之处.处理不等式的解与解集的关系时可以通过一些通俗的事例使学生认识到不等式的解集包括了不等式的全体的解,解集中任何一个数都是不等式的一个解.)
(三)用数轴表示不等式解集
例题: 在数轴上表示下列不等式的解集 (1)x>-1;(2)x≥-1;(3)x
注意:1.有等号画实心圆点,无等号画空心圆圈 2.大于向右走,小于向左走.(教学说明:通过数轴表示,可以直观反映不等式的解集,这正体现了数形结合的思想,通过学习,使学生熟练掌握不等式解集的表示,做到能将解集的数学式子表示与几何图形表示互相“翻译”.)
三、巩固训练,熟练技能:
1、指出下列关系式中的不等式:
(1)1〉0 (2)a≤20 (3)2y+1 (4)1≠3-4k (5)3x+20=0
2、用不等式表示下列数量关系 (1)a与1的和是正数; (2)y的2倍与1的和大于3; (3)x的一半与x的2倍的和是非正数; (4)c与4的和的30%不大于-2; (5)x除以2的商加上2,至多为5; (6)a与b两数的和的平方不可能大于3.
3、下列说法中正确的是( ) A.x=3是不等式2x>1的解 B.x=3是不等式2x>1的唯一解; C.x=3不是不等式2x>1的解; D.x=3是不等式2x>1的解集
4、如图,表示的是不等式的解集,其中错误的是( )
5、在数轴上表示下列不等式的解集 (1)x>3 (2)x
4、5考察了不等式的解集在数轴上的表示,是数形结合的体现,注意实心圆点与空心圆圈的区别,向左还是向右画线也要考虑清楚.)
四、总结反思,情意发展
(设计说明:设计了以下三个问题,让学生围绕这三个问题,先反悟,后谈自身的收获和疑问,最后师生共同归纳总结)
1.什么是不等式?什么是不等式的解、不等式的解集和解不等式? 2.不等式的解和不等式的解集有何区别? 3.在数轴上表示不等式解集时应注意什么? (教学说明:通过对以上三个问题的思考引导学生回顾整节课的学习历程,巩固所学知识,不断完善自己的认识,形成完整的知识结构.)
五、课堂小结
1.本节主要学习了不等式、不等式的解和解集、不等式解集的表示方法 2.主要用到的思想方法是类比思想和数形结合思想。 3.注意的问题: (1)不等式的解集是个范围,而不等式的解是这个范围中的个体 (2)画数轴表示不等式的解集时要注意方向和空心、实心之分.
六、布置课后作业:
1、课本123页练习
2、课本128习题9.1的
1、
2、3题 (教学说明:进一步巩固本节课所学知识.)
七、拓展练习
1、下列数值中哪些是不等式>50的解?哪些不是? 76,73,79,80,74.9,75.1,90,60
2、直接想出不等式的解集,并在数轴上表示出来: (1)x+3>6(2)2x0
3、不等式x
4、写出一个不等式,使它的某一个解是100.(教学说明:这是一组提高性练习,练习3可以借助数轴来理解,这样形象直观,练习4是个开放性题,答案不唯一,只要满足某一个解是100即可.)
【评价与反思】
本课设置了丰富的实际情境,比如跷跷板游戏、爆破问题等,研究这些问题,可以使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型.
教学中要突出知识之间的内在联系.不等式与方程一样,都是反映客观事物变化规律及其关系的模型.在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、甄别,从而得出一元一次不等式、不等式的解与解集的意义.
教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程.这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,再加上多媒体的运用,使学生真正成为学习的主体。