这里能搜索到更多你想要的范文→
当前位置:好范文网 > 教学资源 > 教学设计 >

质数和合数教学设计多篇

发布时间:2023-07-05 11:48:58 审核编辑:本站小编下载该Word文档收藏本文

[概述]质数和合数教学设计多篇为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

质数和合数教学设计多篇

质数和合数教学设计1

教学内容:

复习质数、合数的特征并利用质数和合数的知识点,把质数和合数知识大胆运用到正方体拼组图形中。

教学目标:

1、复习质数、合数的特征、复习长方体、正方体的特征。

2、利用质数和合数的知识点,把质数和合数知识大胆运用到小正方体拼组图形中。引导学生归纳出:小正方体的个数是质数个时,只能拼成一种长方体,而小正方体是合数个时,哪种表面积最大或最小。

3、培养学生的逻辑思维能力与空间想象能力。

教学重点、难点:

如何把质数和合数的知识运用到拼组图形中,并能归纳出合数个小正方体拼组成的图形,谁的表面积的大、谁的表面积小。

教具准备:

1、每人20个小正方体。

2、题卡每个小组两张.。

教学过程:

一、激趣导入,复习铺垫。

创设问题:

1、师:比一比:老师写出1至20,你们说出1至20,看看谁最快?

课件1出示:1、2、3、4、5、6、7、8、9、10、

11、12、13、14、15、16、17、18、19、20…..

(课堂上,我班学生感觉到不太可思议,太简单了,于是高高兴兴的在本子上认真书写,写好后还再高兴中我就提出新的问题!)

2、在我们的生活中,你知道这些数的用途吗?

(当时,课堂气氛相当活跃,学生七嘴八舌说出许多这些数在生活中的用途。即数学问题的“生活化”,让数学教学内容向学生的生活实际延伸,让生活中的数学问题进入数学教学,使学生感受到课堂上学习的数学知识来源于生活,而又运用于生活中。)

3、问题情境:你能用本学期的知识给这些数分分类吗?

学生很快就把这1至20分好了类:

(1)是不是2的倍数来分:

奇数:1、3、5、7、9、11、13、15、17、19

偶数:2、4、6、8、10、12、14、16、18、20

(2)按约数的个数分:

既不是质数也不是合数的(只有一个约数):1

质数(两个约数):2、3、5、7、11、13、17、19

合数(三个约数):4、6、8、9、10、12、14、15、16、18、20

4、让学生给1至20说出它们的因数:

找出质数的所有因数:

2的因数:1、2

3的因数:1、3

5的因数:1、5

7的因数:1、7

11的因数:1、11

13的因数:1、13

17的因数:1、17

19的因数:1、19

小结:质数的因数只有1和它本身。

找出合数的所有因数:

4的因数:1、2、4

6的因数:1、2、3、6

8的因数:1、2、4、8

9的因数:1、3、9

10的因数:1、2、5、10

12的因数:1、2、3、4、6、12

14的因数:1、2、7、14

15的因数:1、3、5、15

16的因数:1、2、4、8、16

18的因数:1、2、3、6、9、18

20的因数:1、2、4、5、10、20

小结:合数的因数除了1和它本身以外,还有其他的因数。

5、复习长方体与正方体的相关知识点。

(1)让学生回忆长方体与正方体的知识。

长方体:6个面,面积完全相同;8个顶点;12条棱,相对的棱的长度相等

正方体:6个面,相对的面面积完全相同8个顶点;12条棱,长度都相等。

二、质疑、探究。

1、问题情境

师:昨天,我们班有一个同学在做题的时候遇到了困难,你们愿不愿意帮帮他呀?得到了学生肯定的回答,我出示课件:12个棱长是1厘米的小正方体拼组图形,问拼成的立体图形,表面积多少?

学生用练习本完成。

(1)12×1×4+1×1×2=50(平方厘米)

(2)6×2×2+6×1×2+2×1×2=40(平方厘米)

看着学生的答题,我试问学生,还有没有算出与这两位同学不一样的表面积?

学生一口同声的回答:没有!

2、分析与探究。

师:那我们一起用小正方体来拼一拼,算一算!

课件出示:12×1×4+1×1×2=50(平方厘米)

6×2×2+6×1×2+2×1×2=40

4×3×2+4×1×2+3×1×2=383×2×4+2×2×2=32

教师小结:通过比较发现,12个小正方体可以拼成四种不同的长方体,体积一样,但表面积各不相同。

3、带问题合作探究。

师:下面我们分小组合作交流,我给每个同学20个大小一样的正方体,看看你能拼出哪些不同的长方体。并以五人小组合作记录在下面的表格,小组合作,并填写下表:

师:同时,谁能结合质数和合数的知识,你能联系质数和合数的知识,熟练拼组出这些图形吗?并把你拼出的长方体或正方体的长、宽、高跟你的小组同学说一说,看看和你的拼组图形一样,特别注意的是看看哪个同学在拼一拼、说一说的过程中有新的发现?

质数和合数教学设计2

教学目标:

①使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。

②知道100以内的质数,熟悉20以内的质数。

③培养学生自主探索、独立思考、合作交流的能力。

④让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

教学重点:质数和合数的意义。

教学难点:正确判断一个常见数是质数还是合数。

教学过程:

一、导入(课件出示)

1.在1——20的各自然数中,奇数有哪些?偶数有哪些?

2.想一想:自然数分成奇数和偶数,是按什么标准分的?自然数分几类?

师:自然数还有一种新的分类方法,今天就来学习这种分类方法。

二、出示预习提纲:

自学内容P23-24例1、做一做,P25—26的T1—5

思考:

1、按要求填书中表:

从上面的表格中的数据有什么特点?

2、什么叫质数和合数?举例说明。

3、在这个表中找出100以内的全部质数

小组讨论,你发现了什么?

4、把不理解的内容做好标记。

三、汇报展示:

1.学习质数和合数的概念。

预习反馈(1)请写出1~20各数的因数?(根据学生的回答板书)

预习反馈(2)观察:填在书中第23页表格中的数据有什么特点?

(3)学生讨论后归纳分成三类:只有因数1的;只有1和它本身这两个因数的;除了1和本身之外还有其他因数的。)

反馈:只有一个因数的:1

只有1和它本身两个因数的:2,3,5,7,11,13,17,19

有两个以上的因数的:4,6,8,9,10,12,14,15,16,18,20

(4)教学质数和合数的概念。

①自然数只有两个因数的,如:2、3、5、7、11、13、17、19等。这几个数的因数一定是多少?

讲:一个数,如果只有1和它本身两个因数,我们把这样的数叫做质数(或素数)。(板书“质数”)

②4、6、8、9、10、12、14、……这些数的因数与上面的数的因数相比有何不同?

讲:一个数,如果除了1和它本身两个因数外还有别的因数,我们把这样的数叫做合数。(板书“合数”)

注意:1既不是质数,也不是合数。

(5)提问:什么叫质数?什么叫合数?自然数按因数个数来分,可以分几类?

2、质数、合数的判断方法。

(1)我们应该怎样去判断一个数是质数还是合数?(根据因数的个数来判断)

(2)完成P23做一做,判断下列各数中哪些是质数,哪些是合数?(先独立完成,再同桌互查)

(3)提问:你是怎样判断的?(找出每个数的因数的个数)

判断是质数还是合数,是不是把所有的因数都找出来?(不必要,只要发现自然数除了1和本身指望还有其它的因数,不管有几个,它都是合数)

3.出示P24例题1,找出100以内的质数,做一个质数表。

(1)提问:如何很快的制作一张100以内的指数表?

(2)按质数的概念逐个判断?也可以用筛选法。

(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也不是合数,所以也必须排除,这样剩下的就是100以内的质数。

100以内的质数:(略)

(4)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如100以内的质数表。(或者看6的倍数的左右)

四、反馈检测

完成P25题1~5

第3题:质数+质数=10,质数×质数=21,分析:这两个质数一定小于10,10以内的质数有2,3,5,7,通过观察可知,只有3和7。

同样,质数+质数=20,质数×质数=91,只有3+17=20和7+13=20,而积是91的只有7和13。

板书设计

质数和合数

质数(素数):只有1和它本身两个因数。如2、3、5、7

合数:除了1和它本身还有别的因数。如4、6、15、49

附质数和合数检测题:

一、填空。(口答)课件出示

1、最小的自然数是(),最小的质数是(),最小的合数是(),最小的奇数是()。

2、20以内的质数有(),20以内的偶数有(),20以内的奇数有()。

3、20以内的数中不是偶数的合数有(),不是奇数的质数有()。

4、在5和25中,()是()的倍数,()是()的约数,()能被()整除。

二、猜一猜:(课件出示)

三、判断题,对的在括号里写“√”,错的写“×”。

(1)任何一个自然数,不是质数就是合数。()

(2)偶数都是合数,奇数都是质数。()

(3)7的倍数都是合数。()

(4)20以内最大的质数乘以10以内最大的奇数,积是171。()

(5)只有两个约数的数,一定是质数。()

(6)两个质数的积,一定是质数。()

(7)2是偶数也是合数。()

(8)1是最小的自然数,也是最小的质数。()

(9)除2以外,所有的偶数都是合数。()

(10)最小的自然数,最小的质数,最小的合数的和是7。()

质数和合数教学设计3

1.使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2.培养学生观察、比较、抽象、慨括的能力。

3.培养学生自主探究的精神和独立思考的能力。

教学重点:质数和合数的概念。

教学难点:正确区分质数、合数。

教学过程:

课前谈话:

给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小*的分类方法。明确:分类的际准很重要。

一、复习旧知

说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。

板书对应的集合图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的集合圈里。

问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找质数的方法来给自然数分类。

复习:什么叫因数?怎样找一个数所有的因数?

同桌合作.找出列举的各数的所有的因数。(同时板演)

引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况!

根据学生的回答板书。

自然数

(因数的个数)

(只有两个因数)(有3个或3个以上的约数)

引导学生思考:只含有两个因数的,这两个因数有什么特点?引出质数的概念。

明确合数的概念.提问:合数至少有几个因数?想一想:1的因数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,奇数,偶数的个数也是无限的。运用新知,解决问题。

出示例1下面各数,哪些是质数?哪些是合数?

1528315377891ll

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的因数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的因数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成练一练。

三、练习巩固

1、坚持下面各数的因数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22293549517983

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生操作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

四、全课总结

学到这里,一种新的分类方法,你掌握了吗?学生回答:揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是这样的关系呢?

五、布置作业(略)。

教学反思:

概念的教学往往是枯燥的,一般不是有教师和学生的重复不断语言就是有很多的练习题训练。而这一节课教学使学生感到特别兴奋。

第一、在概念教学中,师生的这种融洽的.、和谐的,而又不失激情的课堂氛围感染了我。它一改概念教学的枯燥与乏味。让学生在做中学,源于课本又超越了课本,学生用本册刚刚学到的数据收集和整理的知识,来动手操作研究这一节课,使得学生的兴趣一下子就被调动起来了。

第二、探究、合作、讨论、自主学习是新课程标准的基本理念。在概念教学中如何实施这一理念是这一节课的特色,教学中教师通过自己对教材的理解,对学生的了解。精心设计了问题,巧妙地进行引导学生思考、讨论探索、总结发现规律。学生通过异质的组合来讨论、探究知识,促进相互的学习,提高合作的能力,这对学生一生的发展都的有用的。

第三、大数学观是小学数学新课程标准的重要理念,这一片段的教学中不仅体现了小学数学知识的综合性强的特点,而且真正的把数学知识的教学、动手能力、合作能力等人文素养的培养结合在一起。学生的异质组合讨论、动手拼一拼、相互商议、个别争论等都无不体现了教师先进的教育教学理念。

你也可以在好范文网搜索更多本站小编为你整理的其他质数和合数教学设计多篇范文。

word该篇DOC格式质数和合数教学设计多篇范文,共有5392个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
质数和合数教学设计多篇下载
质数和合数教学设计多篇.doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无