这里能搜索到更多你想要的范文→
当前位置:好范文网 > 教学资源 > 教学设计 >

《乘法结合律》教学设计(精品多篇)

发布时间:2023-06-30 08:36:21 审核编辑:本站小编下载该Word文档收藏本文

[说明]《乘法结合律》教学设计(精品多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

《乘法结合律》教学设计(精品多篇)

《乘法结合律》教学设计 篇一

教研课题:

学法有效性研究

教学目标:

1、经历乘法结合侓的探索过程,能用字母表示乘法结合律,进一步培养发现问题和扯出问题的能力,积累数学活动经验。

2、能运用乘法交换律和结合律,对一些算式进行简便运算,体会数学方法的多样化,发展数感。

教学重点:

引导概括出乘法结合律,并运用乘法结合律进行简算。

教学难点:

乘法结合律的推导过程。

教学方法:

尝试教学法自主探究法

教学过程:

一、复习导入

1、25x6=70x5=14x100=

25x4=35x2=125x8=

2、师:看到同学们有这样快速准确的计算能力,老师真为你们高兴!

老师刚刚发现了两组比较有趣的算式,想和同学们一起分享。

二、探索发现

大屏幕出示两组算式

(2x4)x32x(4x3)

=8x3=2x12

=24=24

(2x4)x3=2x(4x3)

(7x4)x257x(4x25)

=24x25=7x100

=700=700

(7x4)x25=7x(4x25)

=24x25

=700

师:请大家观察这两组算式,再照样子仿写一组,然后小组内说说你们发现了什么?

小组交流汇报

(要求:学生能说出三个数相乘,先把前两个数相乘,再乘第三个数所得的积,与先把后两个数相乘,再乘每一个数所得的积是相等的。)

三、运用验证

师:数学来源于生活,生活中处处有数学。下面我们就找生活中的事例来解释自己所发现的这个事例。

出示书中的两个例子

要求:(1)先说清楚两个算式中每一步表示什么?

(2)再说两个算式特点是否符合我们发现的规律。

小组交流、汇报

师:任意三个数相乘,改变了运算顺序,积都不变吗?

先独立举例子,写练习本上。(大数用计算器)

再小组交流,板书展示一组。

四、表示对比

师:用语言文字来描述这个规律语句比较冗长、复杂,如果用字母表示就比较简洁了。用a、b、c三个字母表示这三个数,你能写出这个规律吗?

汇报

学生口述,板书

(axb)xc=ax(bxc)

看着字母表示的形式,完整地述说乘法结合律的意义。

板书课题乘法结合律

加法结合律和乘法结合律对比

五、简捷计算

直接出示125x9x8

生观察算示的特点,思考怎样算简便?运用了哪个运算律?

展示简便运算过程。

总结简便运算的步骤。

六、应用提升

1、说一说,下面算式分别运用了什么运算定律?

72+48=48+72()AxB=BxA()

a+(20+9)=(a+20)+9()

(△x○)xb=△x(○xb)()

2、教材55页2题、4题

七、总结

本节课你有哪些收获?

八、板书设计

乘法结合律

学生举例题

(axb)xc=ax(bxc)

《乘法结合律》教学设计 篇二

教学目标

1、使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

2、使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。

3、使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

教学过程

一、复习旧知、导入新课

1、出示:

你能在下列的 内填上合适的数吗?

28+320=320+ ;

(27+138)+62=27+( + );

35+ = +35。

提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?

2、出示:

在下列○内填上合适的运算符号。

4○10=10○4 (2○3)○5=2○(3○5)。

谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?

3、导入新课。

谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?

二、举例验证探索规律

(一)探索乘法交换律。

1、情景中感知乘法交换律。

出示例题。(略)

谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?

学生列式:3x5=15(人)或5x3=15(人)。

提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3x5,也可以列式5x3。所以,这两道算式可以用什么符号联结?

板书:3x5=5x3。

【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】

2、举例验证。

谈话:我们知道3x5=5x3,你能再写出一些这样的等式吗?

学生举例。

引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?

学生交流,教师选择一些等式板书。

电脑验证大数相乘的结果。

谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。

3、总结规律。

讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)

板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。

提示:你能像加法交换律一样用字母来表示乘法的交换律吗?

板书:axb=bxa。

提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?

4、回忆乘法交换律在过去学习中的运用。

谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)

(二)探索乘法结合律。

1、初步感知。

谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。

出示例题。(略)

谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?

组织学生交流。选择列为(5x3)x4和5x(3x4)的同学板演。

2、引导比较。

提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)

提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)

板书:(5x3)x4=5x(3x4)。

3、举例验证。

谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。

组织交流,教师有选择地板书一些等式。

4、总结规律。

讨论:

(1)你发现等号两边的算式中什么不变,什么变了?

(2)你能从这些算式中发现什么规律?

师生共同归纳乘法结合律。

板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。

谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?

板书:(axb)xc=ax(bxc)。

三、尝试运用理解规律

1、做“想想做做”第1题。(略)

2、尝试简便运算。

谈话:根据我们学习加法运算律的经验,想一想,学习乘法交换律和结合律,对我们的学习会有什么帮助呢?现在就让我们用学到的乘法运算律来进行简便运算吧!

出示第62页的“试一试”,学生尝试简便运算。

指名学生板演。

评讲:你能说出计算时运用了乘法的什么运算律吗。

小结。(略)

四、巩固练习拓展提高

1、做“想做做做”第2题。

观察:你发现每一组题的上、下两道算式有什么联系?

谈话:每组的两道题,你可以任选一道题进行计算,看谁既会选又会算!

提问:你能说出算得又对又快的理由吗?

2、做“想想做做”第3题。

谈话:你运用乘法的运算律使计算简便吗?比一比谁算得又对又快!

组织交流。

3、用简便方法计算。

25x6x4x15 25x125x32

学生练习后,组织交流。

五、引发联想,鼓励探究

谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?

127-53-27 218-69-31

127-27-53 218-(69+31)

72÷3÷8 54÷3÷2

72÷8÷3 54÷(3x2)

《乘法结合律》教学设计 篇三

教学内容:

教材第33页的主题图,第34—35页的例1(乘法交换律)和例2(乘法结合律)以及练习五中的相关习题。

教学目标:

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。

教学重点:

理解乘法交换律和乘法结合律。

教学难点:

能运用乘法交换律和乘法结合律进行简便计算。

教学准备:

多媒体。

教学方法:

尝试法、观察比较法。

教学过程:

一、复习导入

我们已经学过了哪些运算定律?请你用自己的话说一说,并说一说怎样用字母表示。

二、探究新知。

1、主题图引入

(1)出示主题图,让学生仔细观察,说一说图中告诉我们哪些信息

(2)你能提出哪些问题?(指定多名学生说一说。)

2、学习例1。

(1)出示例1:负责挖坑、种树的一共有多少人?

(2)启发学生思考:要解答“负责挖坑、种树的一共有多少人?”这个问题,需要知道主题图中哪些相关信息?指定学生回答,课件出示、:一共有25个小组,每组里4人负责挖坑、种树。

(3)学生独立列式计算。教师根据学生回答,边板书:

4x25=100(人)25x4=100(人)

(4)教师引导学生观察,比较两种解法有何异同。

启发思考:这两个算式得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(即:4x25=25x4)这个等式说明了什么?

(5)你能再举出几个这样的例子吗?(学生举例)

(6)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)

(7)教师引导学生归纳小结:交换两个因数的位置,积不变。这叫做乘法交换律。(学生齐读。)

(8)让学生用自己喜欢的方式表示乘法交换律: axb=bxa。让学生说一说:这里的a、b可以是哪些数?

(9)拓展:找一找,主题图中哪个问题可以用乘法交换律来解决。

(10)我们学习哪些知识时用了乘法交换律?

(11)反馈练习:完成教材第35页“做一做”的第1题。

3、学习例2。

(1)出示例2:一共要浇多少桶水?

(2)启发学生思考:要解决这个问题又需要知道哪些信息?指定学生回答,教师边课件出示:一共有25个小组,每组要种5棵树,每棵树要浇2桶水。

(3)学生独立列式计算,教师巡视指导。指定不同算法的学生发表意见,教师根据学生回答边板书:(25x5)x2和25x(5x2)。

(4)教师引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。即:(25x5)x2=25x(5x2)

(5)哪一种方法计算起来更简便?

(6)你还能举出其他这样的例子吗?指定学生回答,教师边板书。

(7)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)你们能给乘法的这种规律起个名字吗?

(8)教师引导学生归纳小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

(9)用字母怎样表示?(axb)xc=ax(bxc)

(10)反馈练习:完成教材第37页的第2题。

4、乘法交换律和乘法结合律的应用。

(1)出示:怎样简便就怎样算?

5x37x2 125x4x8x25

(2)思考:怎样计算简便?

(3)学生独立完成,教师巡视指导,指定学生上台板演。

(4)集体订正,指定学生说一说各题运用了什么运算定律。

5、反馈练习:教材第35页“做一做”的第2题。

6、比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。

三、小结

学生小结本节课的学习内容。

教师引导学生回忆整节课的学习要点。

四、作业

《练习册》第14页第1课时的所有习题。

板书设计乘法交换律和乘法结合律

4x25=100(人)25x4=100(人)

4x25=25x4)axb=bxa

(25x5)x2 25x(5x2)

=125x2 =25x10

=250(桶)=250(桶)

(25x5)x2=25x(5x2)

(axb)xc=ax(bxc)

你也可以在好范文网搜索更多本站小编为你整理的其他《乘法结合律》教学设计(精品多篇)范文。

word该篇DOC格式《乘法结合律》教学设计(精品多篇)范文,共有5328个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
《乘法结合律》教学设计(精品多篇)下载
《乘法结合律》教学设计(精品多篇).doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无