这里能搜索到更多你想要的范文→
当前位置:好范文网 > 教学资源 > 教学设计 >

三角形内角和教学设计(合集58篇)

发布时间:2023-02-03 16:12:55 审核编辑:本站小编下载该Word文档收藏本文

好范文网小编为你精心整理了58篇《三角形内角和教学设计》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在好范文网搜索到更多与《三角形内角和教学设计》相关的范文。

篇1:《三角形内角和》教学设计

教学目标:

1、教会学生主动探究新识的方法,学会运用转化迁移数学思想。

2、学生通过量、剪、拼、摆、分割等验证三角形内角和方法的比较,主动掌握三角形内角和是1800,并运用所学知识解决简单的实际问题,发展学生的观察、归纳、概括能力和初步的空间想象力。

教学重点:理解并掌握三角形的内角和是180°。

教学难点:验证所有三角形的内角之和都是180°。

教具准备:多媒体课件。

学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)

教学过程:

一、导入

师:知道今天我们学习什么内容吗?我们先来解读一下课题,三角形,你手中有么?举起来我看看,你拿的什么三角形?你呢?师:三角形按角分类,可分为直角三角形、钝角三角形和锐角三角形。

师:什么是内角?你能把你手中三角形的三个内角用角1、角2、角3标出来吗?

师:还有一个关键字“和”,什么是三角形的内角和?

师:你认为三角形的内角和是多少度?你呢?都知道啊?是多少度啊?看来都知道了,就不用再学了吧?你还想学什么?

师:看来我们不仅要知道三角形的内角和是180度,还要亲自证明一下为什么是180度。这才真了不起呢。能证明吗?你想怎么证明阿?

生:量一量的方法。

师:光量就知道了?还要算一算。

师:这种方法可行吗?下面咱就来试试,请同学们4人一组,分工合作,先测量内角,再计算求和。小组长把计算的过程记录下来。开始吧。

验证:量角、求和

小组汇报

生一:我们组量的是锐角三角形,三个角分别是50度、60度、70度,锐角三角形的内角和是180度。

生二:我们组量的是直角三角形,三个角分别是90度、35度、55度,直角三角形的内角和是180度。

生三:我们组量的是钝角三角形,三个角分别是120度、40度、20度,钝角三角形的内角和是180度。

师:从刚才的交流中,你发现了什么?

生:不管是锐角三角形、直角三角形,还是钝角三角形,内角和都是180度。

师:下面同学测量得出180度的请你举手,有没有不是180度的?为什么有不同的答案呢?反思一下。我们在测量的时候容易出现误差,得出的结论就难以让人信服。看来似乎用量的方法还不能充分证明。(划问号)

师:还敢接受更大挑战吗?把量角器和你的工具都收起来,只借助这张三角形纸片证明出三角形的内角和是180度,你有办法吗?或许下面的同学还有别的方法,下面就请同学们互相交流交流,动手试一试吧!

师:这种方法怎么样?(鼓掌)老师感到非常的惊喜,你看他们没有破坏三角形,就这样轻轻的一折,就解决了问题,真是很巧妙。

师:你们小组每个同学都动脑筋了,谢谢你们。

师:还有那个小组用的这种方法?你们也非常的聪明。还有别的方法吗?

师:其实大家能用3种方法证明已经很不简单了,现在我们就能很自信的说三角形的内角和是180度。(擦别的)

师:其实对我来说重要的不是知识的结论,让老师感动的是你们那种渴望求知,敢于探索的精神。更让老师高兴的是你们积极思考所得出的创造性的方法。现在我们再来一块回顾一下。

师:这几种方法都足以说明三角形的内角和是180度。(结论)

师:刚才同学们发挥自己的聪明才智,想了很多方法来证明。王老师也有一种方法能证明。老师这里有一个活动角,借助课本的一边就构成了一个三角形,请你睁大眼睛仔细观察,你发现了什么?

请你再仔细观察,你发现了什么?其实两个底角减少的度数,正是顶角增大的度数。如果我继续按下去你觉得会怎样?我们来看看是不是这样,三角形呢?两个底角呢?刚才三角形的动态过程是不是也能证明三角形的内角和是180度?

师:看来只要大家肯动脑筋,面对同一问题就会有不同的解决方法。

师:现在我们知道了“三角形的内角和是180度”,能不能用这个知识来解决一些问题啊?

生:能。

二、迁移和应用

(一)点将台:

下面哪三个角是同一个三角形的内角?

(1)30 °、60 °、45 °、90 °

(2)52 °、46 °、54 °、80 °

(3)45 °、46 °、90 °、45 °

(二)我会算

1、已知∠1,∠2,∠3是三角形的三个内角。

(1)∠1=38° ∠2=49°求∠3

(2)∠2=65° ∠3=73° 求∠1

2、已知∠1和∠2是直角三角形中的两个锐角

(1)∠1=50°求∠2

(2)∠2=48°求∠1

3、已知等腰三角形的一个底角是70°,它的顶角是多少度?

(三)。变变变!

(1)一个三角形中, ∠1 、∠2、∠3。

(2)如果把∠3剪掉,变成了几边形?它的内角和变成多少度呢?

(3)如果再把∠2剪掉,剩下图形的内角和是多少度呢?

三、全课小结

师:通过一节课的探索,你有什么收获?

生答(略)

我的几点认识:

结合《三角形的内角和》这节课,我对空间与图形这一部分内容,简单的谈一下自己的认识。

空间与图形这一部分内容,可以用这几个字来概括:难理解,难受,难掌握。在本节课的教学中,三角形的内角和概念比较抽象,学生比较难理解。尤其是让学生探究三角形的内角和是180度,对学生来说更是难上加难。如果光凭在头脑中想,不动手实践,对于三角形的内角和,学生也只能机械记忆是180度。那如何更好的让学生掌握和接受呢?针对这些特点我采用了一下几点做法:

1、根据学生的知识特点和生活经验,在原有基础上创造性的使用教材。

在教学本节课的内容时,学生在自己的日常生活或大部分都已经知道三角形的内角和是180。因材在这样的情况下,我创造性的使用教材。不是让学生通过自己动手操作之后才发现三角形的内角和是180,而是直接把问题抛给学生,你们知道三角形的内角和是多少度吗?

你们怎么知道的?能自己证明么?这样学生从被动学习者的角色,

立刻转入主动学习者的角色之中。这样既能使学生很好的掌握知识,又能使学生激发兴趣,提高积极性。

2、让学生在小组交流中进行思维的碰撞,在动手操作的实践过程中得到知识情感价值的升华。

在探究的过程中,我们采用了小组合作学习方式,这样既能给学生提供交流的空间,又能在短时间内有效学习。学生先交流方法,商定出可行的办法和方略,然后合作进行实践。学生会为了一个问题争的面红耳赤,在这个过程中我们惊喜的看到生在交流和动手操作过程中得到了提高。通过自己的实践证明,学生发现三角形的内角和的确是180度。

总之,在教学空间与图形的内容时,一定要让学生看到“图形“,让学生想象”空间”。

篇2:《三角形内角和》教学设计

教学内容:

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:

1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3.培养学生动手动脑及分析推理能力。

重点难点:

掌握三角形的内角和是180°。

教学准备:

三角形卡片、量角器、直尺。

导学过程

一、复习

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)

二、新知

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)

1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)

(4)汇报结论(清楚明白的给小组加优秀10分)

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)

三、知识运用(课件出示练习题,生解答)

1、填空

(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).

(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。

(3)等边三角形的3个内角都是( )。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。

(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。

2、判断

(1)一个三角形中最多有两个直角。 ( )

(2)锐角三角形任意两个内角的和大于90。 ( )

(3)有一个角是60的等腰三角形不一定是等边三角形。 ( )

(4)三角形任意两个内角的和都大于第三个内角。 ( )

(5)直角三角形中的两个锐角的和等于90。 ( )

四、拓展探究

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

六、谈谈自己本节课的收获。

教学反思

今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想研究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。

如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。

如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。

本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。

给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。

前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。

总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。

篇3:《三角形内角和》教学设计

教学目标:

1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

3、经历三角形内角和的研究方法,感受数学研究方法。

教学重点:

1、探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

教学难点:

掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:

表格、课件。

学具准备:

各种三角形、剪刀、量角器。

一、创设情境揭示课题。

1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。

生1:大三角形大(个子大)

生2:小三角形大(有钝角)

(教师不做判断,让学生带着问题进入新课)

2、什么是三角形的内角和?(板书:内角和)

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:

1、你认为谁说得对?你是怎么想的?

2、你有什么办法可以比较一下这两个三角形的内角和呢?

生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

生3:用折一折的办法把三个角折到一起看它们能不能组成平角

(二)探索与发现

活动一:量一量

(1)①了解活动要求:(屏幕显示)

A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

B、把测量结果记录在表格中,并计算三角形内角和。

C、讨论:从刚才的测量和计算结果中,你发现了什么?

(引导生回顾活动要求)

②小组合作。

③汇报交流。

你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

(引导学生发现每个三角形的三个内角和都在180°,左右。)

(2)提出猜想

刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

活动二:拼一拼,验证猜想

这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

(1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。

(2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

(3)分组汇报,讨论质疑

(4)课件演示,验证结果

活动三:折一折

师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。

(把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180°,)。

讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

提问:还有没有其它的方法?

3、回顾两种方法,归纳总结,得出结论。

(1)引导学生得出结论。

孩子们,三角形内角和到底等于多少度呢?”

学生答:“180°!”

(2)总结方法,齐读结论

我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

(3)解释测量误差

为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?

那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180°

(三)回顾问题:

现在你知道这两个三角形谁说得对了吗?(都不对!)

为什么?请大家一起,自信肯定的告诉我。

生:因为三角形内角和等于1800180°。(齐读)

三、巩固深化,加深理解。

1、试一试:数学书28页第3题

∠A=180°—90°—30°

2、练一练:数学书29页第一题(生独立解决)

∠A=180°—75°—28°

3、小法官:数学书29页第二题

四、回顾课堂,渗透数学方法。

1、总结:猜想—验证—归纳—应用的数学方法。

2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

篇4:《三角形内角和》教学设计

教学内容

人教版小学数学第八册第五单元第85页例5

任务分析

教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想―验证―结论的过程,来认识和体验三角形内角和的特点。

学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。

教学目标

1、通过实验、操作、推理归纳出三角形内角和是180°。

2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。

3、通过拼摆,感受数学的转化思想。

教学重点

探究发现和验证“三角形的内角和180度”。

教学难点

验证三角形的内角和是180度。

教学准备

多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。

教学过程

一、复习旧知,学习铺垫

1、一个平角是多少度?等于几个直角?

2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?

二、探究新知,理解规律

1、说明三角形的三个内角和

说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?

师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。

板书课题:“三角形的内角和”。

揭示课题:今天我们一起来探究三角形的内角和有什么规律。

2、探究三角形的内角和规律

探究1:量一量,算一算

以小组为单位,用量角器计算出三种三角形的内角和各是多少度?

生讨论汇报,并引导学生发现:三角形的内角和接近180°。

师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?

学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?

探究2:摆一摆,拼一拼

引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?

生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做

如图:

(1)

锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.

(2)

让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.

(3)

让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.

引导学生归纳:三角形的内角和是180°。

是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)

板书:三角形的内角和是180°

三、巩固练习,应用规律

1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?

学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像

∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

= 180°-140°-25° =180°-(140°+25°)

=40°-25° =180°-165°

=15° =15°

2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?

学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以

(180°-80°)÷2

=100°÷2

=50°

四、拓展练习,深化规律

1、求出下面各角的度数。

(1) (2)

2、判断

(1)三角形任意两个内角的和大于第三个角。( )

(2)锐角三角形任意两个内角的和大于直角。( )

(3)有一个角是60°的等腰三角形不一定是等边三角形。( )

3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?

( ) ( )

五、课堂小结,分享提升

1、谈谈这节课你有什么收获?

2、课后思考题

三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)

板书设计

篇5:《三角形内角和》教学设计

【教材内容】:

北师大版四年级数学下册。

【教学目标】:

1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

【教学重点和难点】:

重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。

【教材分析】

《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。

【教学过程】

一、创设情境,激发兴趣。

出示课件,提出两个两个疑问:

1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?

2、三个形状不一样的三角形的争论。我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?

二、初建模型,实际验证自己的猜想

在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。

三、再建模型,彻底的得出正确的结论

因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。

四、应用新知,巩固练习

1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)

2、试一试,在直角三角形中已知其中的一个角求另一个角的度数

3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。

4、说一说,判断三角形的两个锐角的和大于90度;直角三角形的两个两个锐角的和等90度;等腰三角形沿着高对折,每个三角形的内角和是90度。这些说法是否正确?由两个三角形拼成一个大的三角形,大三角形的内角和是360度,对吗?

五、拓展与延伸

通过三角形的内角和是180度的事实来探讨四边形、五边行的内角和。

篇6:《三角形内角和》教学设计

教材内容:

北师大版义务教育课程标准实验教材四年级下册。

教学目标:

1、经历观察、猜想、实验、验证等数学活动,探索并发现三角形的内角和180°。在实验活动中,体验探索的过程和方法。

2、掌握三角形内角和是180°这一性质,并能应用这一性质解决一些简单的问题。

3、经历探究过程,发展推理能力,感受数学的逻辑美。

教学难点、重点:

经历观察、猜想、实验、验证等数学活动,探索并发现三角形的内角和规律。

教具准备:

直角三角形、锐角三角形、钝角三角形各3个,大三角形、小三角形各1个。

学具准备:

直角三角形、锐角三角形、钝角三角形各3个。

教学设计意图:

“三角形的内角和180°”是三角形的一个重要性质,教材通过多种方法的操作实验,让学生确信这一个性质的正确性。根据学生已有的知识经验和教材的内容特点,本着“学生的数学学习过程是一个自主构建自己对数学知识的理解过程”的教学理念,采用探究式教学方式,让学生经历观察、猜想、实验、反思等数学活动,体验知识的形成过程。整个教学设计力求改变学生的学习方式,突出学生的主体性。在教师的组织引导下,让学生在开放的学习过程中,自始至终处于积极状态,主动参与学习过程,自主地进行探索与发现,多角度和多样化地解决问题,从而实现知识的自我建构,掌握科学研究的方法,形成实事求事的科学探究精神。

教学过程:

活动一:设疑激趣

师:我们已经认识了三角形,关于三角形你知道了什么?

生1:三角形有3条边、3个角。

生2:三角形按角分可以分为锐角三角形、直角三角形、钝角三角形;三角形按边分可以分为等腰三角形和不等边三角形。

生3:每种三角形都至少有两个锐角。

师:三角形有3个角,这3个角又叫三角形的内角。三角形按内角的不同分为锐角三角形、直角三角形、钝角三角形。

师:能不能画一个含有两个直角或两个钝角的三角形呢?为什么?

生1:我试着画过,画不出来。

生2:因为每个三角形至少有两个锐角,所以不可能画出含有两个直角或两个钝角的三角形。

生3:三角形的内角和是180°,两个直角的和已经是180°,所以不可能。

师:你能解释一下什么是“三角形的内角和”吗?你是怎样知道“三角形的内角和是180°”的?

生:把三角形的三个内角的度数相加就是三角形的内角和。“三角形的内角和是180°”我是从书上看到的。

师:你验证过了吗?

生:没有。

师:三角形的内角和是不是180°?咱们还没有认真地研究过,接下来,我们就一起来研究三角形的内角和。

设计意图:“我们已经认识了三角形,关于三角形你知道什么?”课一开始,教师就设计了一个空间容量比较大的问题,旨在让学生自主复习三角形的有关知识,引出三角形的内角概念。然后创设一个能激发学生探究欲望的问题:“能不能画出一个含有两个直角或两个钝角的三角形呢?”有的学生通过动手画,发现一个三角形中不可能有两个直角或两个钝角;有的学生认为三角形的内角和是180°,两个直角的和已是180°,所以不可能。这种认识可能来自于书本,也可能来自于家长的辅导,但学生对于“三角形的内角和是180°”的体验是没有的,学生对所学的知识仅仅还是一种机械的识记,因此“三角形的内角和是否为180°”就成了学生急切需要探究的问题。

活动二:自主探究

师:请同学们拿出课前准备的材料,自己想办法验证三角形的内角和是不是180°?

学生动手操作验证。

师:请大家静静地思考1分钟,将刚才的实验过程在脑中梳理一下。现在请把自己的研究过程、结果跟大家交流一下。

生1:我是用量角器测量的,我量的是直角三角形:

90°+42°+47°=179°

生2:我量的也是直角三角形:

90°+43°+48°=181°

生3:我量的是锐角三角形:

32°+65°+83°=180°

生4:我量的是钝角三角形:

120°+32°+30°=182°

生5:……

师:看到这些度量结果,你有什么想法?

生1:为什么他们测量的结果会不相同?

生2:也许我们测量的方法不精确。

生3:也许我们的量角器不标准。

生4:也可能三角形的内角和不一定都是180°。

师:是呀,用量角器度量容易出现误差,但这些度量的结果还是比较接近的,都在180°左右。

师:有没有没使用量角器来验证的呢?

生:我是用三个相同的三角形来接的(如图)。∠1、∠2、∠3刚好拼成一个平角,所以三角形的内角和是180°。

师:你怎么知道这三个角拼成的大角刚好是一个平角呢?有办法验证吗?

生1:用量角器测量不就知道了吗?

生2:用三角板的两个直角去拼来验证。

生3:因为平角的两条边成一条直线,所以可用直尺来检验。

生4:再拿三个相同的三角形按上面的方法进行拼,这样6个相同的三角形,中间就可以拼出一个周角(如图),周角的一半刚好是平角。

师:通过刚才的验证,可以说明∠1、∠2、∠3拼成的角是平角,那么锐角三角形的三个内角能拼成一个平角吗?钝角三角形呢?请大家试一试。师:如果现在只有一个三角形怎么办?

生:我是将锐角三角形的三个角分别撕下来,拼成一个平角,平角是180°所以锐角三角形的内角和是180°。

师:直角三角形、钝角三角形行吗?来试一试。

生1:老师,不剪下三角形的三个内角也可以验证。只要将三角形的三个内角折拼在一起,看看是不是拼成一个平角就可以了。

师:大家就用折拼的方法试一试。

学生操作验证。

师:刚才我们除了用量角器度量的方法,同学们还想出了其他一些方法:用三个相同的三角形拼、剪拼、折拼等方法,这些方法形式上看起来不一样,其实有共同点吗?

生:都是将三角形的三个内角拼在一起,组成一个平角来验证三角形的内角和是不是180°。

师:通过上面的实验,你可以得出什么结论?

生:三角形的内角和是180°

师:是任意三角形吗?刚才我们才验证了几个三角形呀?怎么就可以说是任意三角形呢?

生:三角形按角分只有锐角三角形、直角三角形、钝角三角形三种,刚才我们都验证过了。

师:(出示一个大三角形)它的内角和是多少度?如果将这个三角形缩小(出示一个小三角形),它的内角和又是多少度?为什么?

生:三角形的三条边缩短了,可它的三个角的大小没变,所以它的内角和还是180。

师生小结:三角形不论形状、大小,它的内角和总是180。

设计意图:学生明确探究主题后,教师只为学生提供探究所需的材料,而不直接给出实验的方法和程序,激励学生自己想办法实验验证,获得结论。然后引导学生交流、评价、反思与提升。验证过程中较好地体现了解决同一问题思维方法,验证策略的多样性。促进了学生发散思维能力的提高,提升了思维品质。

活动三:应用拓展

1、计算下面各个三角形中的∠B的度数。

师:(图2)怎样求∠B?

生:180°―90°―55°=35°

师:还有不同的解法吗?

生:180°÷2―55°=35°,因为三角形的内角和是180°,其中一个直角是90°,另外两个锐角的和刚好是90。

师:是不是任意一个直角三角形的两锐角和都是90°呢?能验证一下吗?

生:因为任意三角形的内角和是180°,其中一个直角是90°,所以其他两个锐角的和肯定是90。

师:有没有反对意见或表示怀疑的?从中我们可以发现一条什么规律?

生:直角三角形的两个锐角和是90°

2、一个等腰三角形顶角是90°,两个底角分别是多少度?

3、等边三角形的每个内角是多少度?

师:现在你能解决为什么一个三角形里不能有两个直角或两个钝角吗?

生:略。

师:通过这节课的学习,你还有什么疑问或还想研究什么问题?

生:三角形有内角和,三角形有外角和吗?

师:你知道三角形的外角在哪儿吗?三角形有外角和,它的外角和是多少度呢?有兴趣的同学请课后研究。

课末,教师激励学生提出新的问题:通过这节课的学习,你还有什么疑问或者还想研究什么问题?培养学生的问题意识,同时让学生带着问题走出教室,拓展学生数学学习的时间和空间。

篇7:《三角形内角和》教学设计

探索三角形内角和的度数以及已知两个角度数求第三个角度数。

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学重点:

了解三角形三个内角的度数。

教学难点:

理解三角形三个内角大小的关系。

教具学具准备:

课件三角形若干量角器剪刀。

教材与学生

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

教学过程:

一、呈现真实状态。

师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

三。自主探索、研究问题、归纳总结:

师引导提问:三角形的内角和会不会就是180呢?

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

(3)把你没有想到的方法动手做一次

(使学生更直观地理解三角形的内角和是180的证明过程)

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示

撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示

2.师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现

三角形三个内角和等于180?

:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

四。巩固练习,知识升华。

1.完成课本第28页的“试一试”第三题。

2.想一想:钝角三角形最多有几个钝角?为什么?

锐角三角形中的两个内角和能小于90吗?

3.有一个四边形,你能不用量角器而算出它的四个内角和吗?

试一试,看谁算得快。

师:谁来说说自己的计算过程?

角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

生:它们的内角和都是 180 度。

师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?

[回答可能有二]:

(一种全部说是:)

师:请问,你们是怎么想的,为什么这么认为?

生: ……

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(一种有一部分同学说是,有一部分同学说不是:)

师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(二)动手操作,探究新知

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)

生:……

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

开始吧!(学生研究,师巡回指导)预设时间:5 分钟

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

( 预设: 如果第一类同学说的是量的方法)

师:你是用什么来研究的?

生:量角器。

师: 那请你说一下你度量的结果好吗?

( 生汇报度量结果)

师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?

生:180 度。

师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?

生:我们还用了折的方法(生介绍方法)

师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

生:是个平角。180 度。

师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。

师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

生 1 :量的不准。

生 2 :有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。

师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

生:三角形的内角和是180 度。(师板书)

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)

师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?

师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

(预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?

师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

篇8:三角形内角和教学设计

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学重点:

了解三角形三个内角的度数。

教学难点:

理解三角形三个内角大小的关系。

教具学具准备:

课件三角形若干量角器剪刀。

教材与学生

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

教学过程:

一、呈现真实状态。

师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]

三、自主探索、研究问题、归纳总结:

师引导提问:三角形的内角和会不会就是180呢?

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

(3)把你没有想到的方法动手做一次

(使学生更直观地理解三角形的内角和是180的证明过程)

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示

撕拼法:

1、教师取出三角形教具,把三个角撕下来,拼在一起,

2、师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现

三角形三个内角和等于180?

意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

四、巩固练习,知识升华。

1、完成课本第28页的“试一试”第三题。

2、想一想:钝角三角形最多有几个钝角?为什么?

锐角三角形中的两个内角和能小于90吗?

3、有一个四边形,你能不用量角器而算出它的四个内角和吗?

意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。

五、总结延伸

这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:

当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。

篇9:三角形内角和教学设计

教学内容:

人教版四年级下册第85面——87面。

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。

3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历“三角形内角和是180°”这一知识的发现过程。

教学准备:

教具:多媒体课件、三角板一个、两个完全一样的直角三角形。

学具:锐角三角形、直角三角形、钝角三角形各一个。

教学过程:

(一)创设情境,提出问题。

师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,

今天老师还给大家带来了一个老朋友,请看,是什么?

生:三角形!

师:前面我们已经认识了三角形,谁能给大家介绍一下?

学生讲学过的三角形知识。

(学生叙述到部分主要内容即可)

师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)

师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?

师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。

师:有谁知道这个三角形三个内角的度数?

(FLASH:生说完后师点击出第二个三角形,边说边点出度数)

[U1]试一试,看谁算得快。

师:谁来说说自己的计算过程?

[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

生:它们的内角和都是180度。

师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?

[回答可能有二]:

(一种全部说是:)

师:请问,你们是怎么想的,为什么这么认为?

生:……

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(一种有一部分同学说是,有一部分同学说不是:)

师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(二)动手操作,探究新知

[U3]

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)

生:……

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

[U4]开始吧!(学生研究,师巡回指导)预设时间:5分钟

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

(预设:如果第一类同学说的是量的方法)

师:你是用什么来研究的?

生:量角器。

师:那请你说一下你度量的结果好吗?

(生汇报度量结果)

师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?

生:180度。

师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?

生:我们还用了折的方法(生介绍方法)

师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

生:是个平角。180度。

师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。

师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。

师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

生:三角形的内角和是180度。(师板书)

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)

师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?

师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?

师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

篇10:三角形内角和教学设计

教学内容:

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

重点难点:

掌握三角形的内角和是180°。

教学准备:

三角形卡片、量角器、直尺。

导学过程

一、复习

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)

二、新知

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)

1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)

(4)汇报结论(清楚明白的给小组加优秀10分)

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)

三、知识运用(课件出示练习题,生解答)

1、填空

(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、

(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

(3)等边三角形的3个内角都是()。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。

(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。

2、判断

(1)一个三角形中最多有两个直角。()

(2)锐角三角形任意两个内角的和大于90。()

(3)有一个角是60的等腰三角形不一定是等边三角形。()

(4)三角形任意两个内角的和都大于第三个内角。()

(5)直角三角形中的两个锐角的和等于90。()

四、拓展探究

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

篇11:三角形内角和教学设计

教学目标:

1、透过操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作潜力、动手实践潜力,发展学生的空间观念。并运用新知识解决问题。

3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。

教学过程:

一、创设情景,引出问题

1、猜谜语:(课件)

形状似座山,稳定性能坚。

三竿首尾连,学问不简单。

(打一图形名称)三角形(板书)

2、猜三角形(课件)

师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你明白这是什么三角形吗?

师:提问第3个图形时问:被遮住的两个角是什么角?

会是两个直角吗?为什么?

(引导学生开始对“三角形的内角和是多少”进行思索。)

3、引出课题。

师:看来三角形里角必须藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)

二、探究新知

1、三角形的内角、内角和

(1)什么是三角形内角(课件)

三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和

师:内角和指的是什么?

生:三角形的三个角的度数的和,就是三角形的内角和。

(多让几个学生说一说)

2、猜一猜。

师:这个三角形的内角和是多少度?

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?能够用什么方法验证呢?

3操作验证:小组合作。

选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生带给充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,透过量一量、折一折、拼一拼、画一画等方式去探究问题。)

4学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种状况?

师:有没有别的方法验证。

(2)剪拼

a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

(3)折拼

师:有没有别的验证方法?

师:我在电脑里收索到折的方法,请同学们看一看他是怎样折的(课件演示)。

(鼓励学生用心开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理潜力。)

(4)数学文化

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

5、巩固知识。

(1)师:你对三角形内角和是多少度还有疑问吗?此刻我们能够肯定的说:三角形的内角和是?度。

(2)解决课前问题,为什么画不出1个内含2个直角的三角形?

1个三角形中有没有2个钝角?

(3)师:我们对三角形的认识已经十分清晰,

出示2个三角形,生分别说出内角和。

把两个小三角形拼在一齐,问:大三角形的内角和是?度。

教师:为什么不是360°?

三、解决相关问题

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

1、看图,求未知角的度数

2、书上88页10题。

教师:刚才,我们利用了三角形的什么?

3、教师:如果一个都不明白,或只明白1个角,你能明白三角形各角的度数吗?

求出下面三角形各角的度数。

(1)我三边相等。

(2)我是等腰三角形,我的顶角是96°。

(3)我有一个锐角是40°。

4、决定。

5、求4边形、5边形内角和。

下课的时间就要到了,我们来一个挑战题。你们敢理解挑战吗?

如果要求10边形的内角和,你会求吗?你有什么发现?

(我的目的不仅仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维潜力。)

四、总结。

师:这节课你有什么收获?

五、板书设计:

三角形的内角和是180°

∠1+∠2+∠3=180°

度量

剪拼

折拼

篇12:三角形内角和教学设计

教学资料:

人教版四年级下册《三角形的内角和》P85

教学目的:

1、学生透过量、折、拼、剪、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践潜力。在应用三角形内角和知识解决问题的过程中促进学生数学思维发展。

3、让学生在探究数学的过程中体验发现的乐趣,增强学好数学的信心。

教学重点:

让学生探究猜想并验证三角形内角和等于180°。

教学难点:

理解所有三角形的内角之和都是180°。

教学准备:

不同类型的三角形纸片,剪刀,量角器。

教学过程:

一、复习旧知,提示课题

1、一个平角是多少度?1个平角等于几个直角?

2、长方形有什么特征?(生汇报:长方形对边相等,有4个角,4个角都是直角)

3、三角形按角分可分成几类?

4、引出内角的概念,我们把图形里面的角叫做内角。三角形有几个内角?三角形三个内角的度数和叫做三角形的内角和。这天我们一齐来研究三角形的内角和。(板书课题:三角形的内角和)

设计意图:学生对数学知识的学习,在很多时候都是对已有数学知识的延伸和发展。本节课,我充分认识到学生已有知识对新知的铺垫和孕伏作用,设计了三道复习题,把角的度数,长方形的特征,三角形的分类这些原本零散的数学知识纳入到一个整体,让旧知的复习、新知的孕伏和引入有机的结合起来。

二、创设情境,大胆猜想

1、长方形的内角和是多少度?为什么?如果沿长方形的一条对角线剪开,长方形就变成了两个什么图形?

2、出示三个三角形,说一说分别属于哪一类?(板书:锐角三角形直角三角形钝角三角形),决定这三个三角形的内角和谁大?为什么?(板书:内角和)

3、你猜三角形的内角和是多少度?(板书:是180°)

设计意图:数学教学最为重要的是要培养学生对数学的感觉,给学生一双数学的眼睛,由于学生已经明白长方形的内角和是360°,抓住时机,要求学生猜一猜三角形的内角和是多少度,以此培养学生的探索精神和创新意识。

三、动手操作,探究验证。

1、小组合作。

同学们能够用什么方法来验证三角形的内角和是180°,请同学们小组合作,充分利用你们的学具进行验证,比一比哪些组的方法多而且又富有新意,开始!

2、汇报交流。

谁愿意来给大家介绍你们小组是用什么方法来验证三角形的内角和是180°的?

量一量:

生:我们小组的方法是用量角器测量出三个内角的度数,再求出它们的和。

师:你们的方法是分别测量三个内角的度数,那你们测量的三个内角的度数分别是多少?(生汇报时吩咐学生记录下来并算出内角和)你觉得这个小组的方法怎样?(抽生评价)这种方法可出现误差吗?为什么?(生回答)

师:能不能因此否定我们刚才的猜想呢?还有不同的方法吗?

折一折:

生:我们是透过折一折的方法得出结论的。(边说边演示)。我将直角三角形的.两个锐角折向直角,三个顶点重合,我发现两个锐角正好组成了一个直角,再加上直角,它的内角和是180°,所以我得出结论:直角三角形的内角和是180°。

生:我拿一个锐角三角形,把上面的角沿虚线横折,使它的点落到底边上,再将剩下的两个角横折过来,使三个角正好拼在一齐,这三个角组成了一个平角,所以我得出结论:锐角三角形的内角和是180°。

生:我拿一个钝角三角形,用同样的方法去折,发现钝角三角形的三个角也正好拼在一齐组成一个平角,所以我得出结论:钝角三角形的内角和是180°。

生:直角三角形的三个角也能够用同样的方法折拼成一个平角。

师:真是心灵手巧的孩子,让我们把掌声送给他们!动脑筋的同学真多,请你说。

拼一拼:

生:我发现两个直角三角形正好能够拼成一个长方形,长方形的四个角都是直角,所以,长方形的内角和是360°。再除以2,就得到直角三角形的内角和是180°。

师:能从不同的角度去思考问题,你真棒!

剪一剪,摆一摆:

生:我们将每个三角形的三个角都剪下来,再把每个三角形的三个角的顶点重合,发现每个三角形的三个角都组成了一个平角,这就证明了三角形的内角和是180°。

师:你们只验证了三个三角形,为什么从中能得出“三角形的内角和是180°”的结论呢?

生:因为三角形按角分能够分为三类,钝角三角形,直角三角形和锐角三角形。我们已经透过各种的方法证明了这三种类型的三角形的内角和是180°,所以能够得出“三角形的内角和是180°”的结论。

师:说得真好,我们给他鼓掌。

师概括小结。:刚才同学们用量、折、拼、计算、推理、剪等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是180°,(师手指课题)你们真不错,我为你们成功的学习表示衷心祝贺,让我们带着自豪的语气大声地读出“三角形的内角和是180°”。

设计意图:新课标注重学生三维目标的培养,在那里,我要求学生用自己的方法进行验证,把知识的学习与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。小组合作是课程改革所倡导的一种学习方式,本节课,我立足于学生的创新意识和实践潜力的培养,把学习的时空还给学生,大胆地开展小组合作学习,使学生透过量、折、拼、剪、摆等操作学具活动主动掌握三角形内角和是180°,同时学生的发散思维也能得到有效培养。

四、实践应用,解决问题

1、那么同学们能不能根据三角形的内角和是180°求出三角形中任意一个角的度数,请完成书85页上“做一做”。

2、请完成书88页第9题

(提示:这一题只明白一个角的度数,另一个角是多少度,从哪看出来的?直角三角形中的一个锐角还能够怎样算?)

3、请完成书88页第10题

设计意图:“解决问题”,按学生的认知水平,是在感知、理解、掌握知识后,认知水平得已体现的最高层次。最后让学生运用结论解决实际问题,为学生把知识转化为潜力起到用心的促进作用。

五、拓展延伸,活用新知

此刻老师手中有一个三角形,我一刀把它剪成两个图形,你猜这两个会是什么图形,它们的内角和是多少度?

把刚才的四边形剪去一个角,得到一个五边形,它的内角和是多少度?

继续剪掉一个角,得到一个六边形,它的内角和是多少度?你发现有什么规律吗?

(学生猜测→动手操作→计算内角和→归纳多边形内角和计算公式)

六、课堂小结,内化知识

这天,你有什么收获?

板书设计:

锐角三角形

因为-直角三角形-内角和是180°

钝角三角形

所以-三角形的内角和是180°

篇13:三角形内角和教学设计

《三角形的内角和》教学设计

一、教材分析:

《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第二单元认识图形中的一个教学资料。这部分资料是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材透过实际操作,引导学生用实验的方法探索规律,概括出一般结论,即任意一个三角形,它的内角和都是180度。之后说明应用这一结论,在一个三角形中,已知两个角的度数,能够求出第三个角的度数。教材在编写上也深刻的体现出了让学生探究的特点,透过动手操作、小组合作探究,发现三角形内角和为180度。它的教学资料的核心思想体此刻,透过让学生透过直观操作,透过猜想—验证—结论的过程,来认识和体验三角形内角和的特点,在小组活动中,通量一量、拼一拼、折一折等进行猜想—验证数学的思想方法。

《三角形的内角和》在教学中,为解决数学思维的抽象性与小学生认知的矛盾,我为学生带给了足够探索的时间和空间,透过观察、操作、分析、推理、想像等活动来认识图形的特征,发展学生的空间观念和推理潜力,为学生进一步学习打基础。

(1)首先透过“猜谜”即复习了所学知识,又从中引出新课,有利于激发学生求知、探索的欲望,也调动了学生学习的用心性。在得到,为什么同学们猜想的三角形和实际的三角形不同,提出了本节课所学重点知识——三角形内角和。透过猜想三角形内角和的度数,引发出要进行验证的数学思想。透过小组合作,利用不同类型的三角形进行实验。因此,实验的对象有较大的包容性,实验的结论有很强的可靠性。学生会完全信服三角形的内角和是180°这一普遍规律。

(2)为了让学生深刻地理解三角形内角和的规律,设计了给出三角形两个角的角度,求第三个角;两块同样的三角尺拼成的一个大三角形的内角和又是多少呢并设计:拼成的是三个角都相等的三角形;拼成的是两个角相等,且有一个角是直角的三角形;拼成的是两个角相等,且有一个角是钝角的三角形。递进的两道题知识点应用的题目,把数学知识与生活紧密联系,培养了学生的求异思维,也感受到解决问题策略的多样性。拓展练习:大三角形,剪下一个角也是一个(小三角形),剪下的小三形的内角和是多少度?那么剩下的图形是多少度?还原成一个大三角形又是多少度?及五边形、六边形等这些多边形的内角和你们能求出吗?进一步使学生加深对概念的理解,明确三角形的内角和是180度,这与它的大小开关无关。运用适度的延伸,激发学生广阔的想象空间,实践探索的欲望,做到让不同的学生学习不同的数学。

二、学生分析:

(一)学生已有知识基础:(调查问卷,访谈)

1、学生已具备了角的度量,角的分类,三角形的认识,三角形的分类等知识。

2、明白等边三角形的每个角是60度,所以能算出“三角形内角和为180度。”学生明白三角形内角和是180度。但是不是所有的三角形都等于180度,学生还不肯定。

3、其中明白三角形内和是180度的学生有23人,占全班总人数的54.8%。

由此,我把自己的学习目标设定为,让学生自己动手发现不同类型的三角形的内角和都是180度这个知识点上。

4、有少部分学生明白无论是大三角形还是小三角形,他们的内角和都等于180度。

(二)学生已有生活经验和已具备的潜力:学生具备了必须的动手操作潜力,和小组的合作交流潜力

(三)学生学习该资料的困难:在小组合作过程中,由于中年级的孩子年龄不大,所以在动手操作过程中有的学生动作较慢,在小组合作谈论的过程中,有些学习困难的学生小组合作潜力偏弱。(课堂中观察小组合作所得出)。

(四)学生学习的兴趣(访谈):

1、自己动手发现三角形内角和为180度,对小组合作很感兴趣。

2、透过学习,明白了三角形无论大小,它的内角和都是180度,对这个知识感到搞笑。

学习方式和学法分析:主要是利用了小组合作学习、伙伴交流

三、学习目标:

1、让学生探索发现三角形的内角和是180°。

2、透过动作剪、摆、拼等活动提高学生的动手潜力和思维潜力,感受数学的转化思想;

3、培养学生主动探索、动手操作的潜力;发展学生的空间观念和初步的逻辑思维潜力;

过程与方法:(数学思考、解决问题)培养学生初步构成验证结论的意识及学生之间良好的合作学习的习惯。理解三角形的内角和是180°,应用三角形内角和的知识解决实际问题。

4、情感态度价值观:渗透转化迁移思想,培养学生大胆质疑的勇气和严谨科学的精神。

教学重点:让学生经历“三角形内角和是180度”这一知识的构成、发展和应用的全过程;明白三角形的内角和是180度并且能应用。

教学难点:三角形内角和是180度的探索和验证。

教学准备:学具准备:各种类型的三角形学具和学习资料。

教具准备:各种类型的三角形教具、实物投影仪、FLASH动画课件。

四、教学过程:

一、创设情景,激发学生学习兴趣(6分钟)

1、你们喜欢玩猜谜游戏么?我那里三个三角形,(贴出图形)

ABC

“你们能猜出这三个三角形分别是什么三角形么?”当学生猜A是锐角三角形时,教师拿去

彩色纸,

ABC

师质疑问:“怎样回事?”(只看到一个锐角不能判定是锐角三角形?要三个锐角才行。)

【“猜谜”即复习了所学知识,又从中引出新课,有利于激发学生求知、探索的欲望,也调动了学生学习的用心性。】

2、师:为什么看到一个直角或钝角就能够决定出是直角三角形或钝角三角形,而看到一个锐角却不能判定是锐角三角形,必须要三个锐角才能说是锐角三角形呢?(如果不能回答,请同学们看黑板上的这3个三角形都有什么共同点?任何一个三角形都有两个锐角。因为每一个三角形都有两个锐角,所以只看到一个锐角就不能决定它必须是锐角三角形。)

3、师:“既然每一个三角形都两个锐角,可不能够有两个直角或两个钝角呢?”,师:下面,请同学们画一个有两个直角的三角形。

师:你们画成功了吗?

师:你们想一想,为什么你们画不出?

师:看来,三角形的三个内角可能藏有必须的奥秘。这节课我们就来一齐研究三角形的内角和。(板书:三角形的内角和)

二、自主探索,合作交流(20分钟)

(一)看了这个课题,你想明白什么或者你有什么问题么?(什么是三角形的内角?内角和是什么意思?三角形的内角和是几度?学习三角形的内角和有什么作用?)

1、理解“内角”。(2分钟)

师:什么是内角?谁想说说自己的想法?(学生说出自己的理解)

师:三角形的每个角都是三角形的内角(课件演示)。你明白一个三角形有几个内角呢?(三个)

2、理解“内角和”。(2分钟)

师:那我们再来想一想三角形的内角和指的是什么呢?能够和同桌说说自己的想法。(生说:就是把三角形的三个内角的度数加起来)为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它∠1、∠2、∠3,这三个角的度数和,就是这个三角形的内角和。

【扫清学生概念上存在的障碍,为深入理解三角形内角和打下了基础】

师:请同学们猜一猜,三角形的三个角加起来是多少度?(生180度),那么所有的三角形的内角和都是180度么?(教师补充板书:三角形内角和1800)(生不是很肯定),

(二)小组合作,探究学习(16分钟)

师:老师在每个同学的桌子上都放了很多不同的三角形,还有量角器等学习材料请同学们先独立思考采用什么方法来验证自己的猜想,再在小组里讨论,交流。

学生交流自己的想法,动手实践操作,验证自己的猜想。

(三)提出实验要求:

1、小组合作:

同学们能够用什么样的方法来证明三角形的内角和是1800,请同学们群众小组合作,充分利用你们的学具进行验证,比一比哪些组的方法多而且又富有新意,开始!

2、汇报交流。

谁愿意来给大家介绍你们小组是用什么方法来验证三角形的内角和是1800的?

生A:我们小组的方法是用量角器测量出三个内角的度数,求出和是1800。

师:你们的方法是分别测量三个内角的度数,那你测量的三个内角的度数分别是多少?(生汇报师板书)你觉得这个小组的方法怎样?(抽生评价)还有不同的方法吗?

生B:先假设是1800,测量出角1和角2的度数,算出第三个角的度数,再用量角器测量验证第三个角是否是算出的结果。(师:那你测量的两个角分别是多少度?怎样算出第三个角的度数,和量角器测量出的结果一样吗?)

师:这个小组的方法也巧妙,还有谁不同的方法?

生C:我是用剪拼的方法,是怎样剪拼的呢?上台来展示给我们大家瞧一瞧(投影仪)(生:把三角形的三个角剪下来后拼成一个平角)你剪的是什么三角形?那还有直角三角形、钝角三角形呢?请男同学拿出钝角三角形,女同学拿出直角三角形,迅速剪下三个角,看能否拼成一个平角。

能够拼成平角吗?那我们就说三角形的内角和是1800,还有同学在举手,请你说。

生D:折,将三角形的三个角折成一个平角。(你是怎样折的,快上来展示给我们大家瞧一瞧!

师:真是个心灵手巧的孩子,让我们把掌声送给他!动脑筋的同学真多,请你说。

生E:我是根据长方形的内角和是3600推理出三角形的内角和是1800。

师:能从不同的角度去思考问题,你真棒!

师小结:(课件演示)刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是1800,(师手指课题)你们真不错,在这句话后面加个什么号?加个感叹号!我为你们成功的学习表示衷心祝贺,让我们带着自豪的语气大声地读出“三角形的内角和是1800”。(教师相应板书?改成!)

师:请同学们打开书27页,这就是我们这天学习的一个新知识。

【透过小组合作中动手操作。加深对三角形内角和地认识,体验、发现三角形内角和性质的探索过程,透过同学之间的合作激发学生的学习兴趣。】

〔点评〕让学生在猜测三角形的内角和是180度之后,用自己的方法予以验证,是本节课最重要的环节,主要有以下几个特点。

(1)、以知识为载体、过程与方法为媒介,把对学生情感态度价值观的培养落实在具体的学习活动之中。学生对内角和的猜测缺乏必须的科学依据。在那里,教师要求学生用自己的方法进行验证,把知识的学习与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。

(2)、知其然,还要知其所以然,让学生完整的经历学习过程。教学透过学生动手量、折、剪、拼、计算、推理等多种方法,得出三角形的内角和是1800,不仅仅验证了自己的猜想,而且也充分第证明了给片面追求过程或者片面追求结果的教学行为以正确的引领,过程与结果是相互依靠,相互支持的整体。

(3)、面向全体学生,把学生是学习的主体落在实处。小组合作是课程改革所倡导的一种新的学习方式,但在具体采用这种方式却出现了一些偏差,往往片面追求形式,追求热热闹闹的场面,给教学造成了必须的负面影响。本节课,教师立足于学生的创新意识和实践潜力的培养,把学习的时空还给学生,成功地开展了小组合作学习,使学生在数学的海洋的遨游中展开思维的翅膀,用7种方法对三角形的内角和是180度进行了验证,也有效地培养了学生的发散思维潜力。

三、运用所学,解决问题(8分钟)

如果老师告诉你一个三角形的两个角的度数,你有本领说出还有一个角的度数吗?

1、求出下面各角的度数。(独立做在书上。)(3分钟)

2、(同桌伙伴活动)刚才同学们完成得都很好,下面我们一齐做一个拼三角形的游戏。

要求:用两个完全一样的三角尺(2组图片代替)拼成一个大三角形,并说出它的内角和是多少度?(5分钟)

(1)拼成的是三个角都相等的三角形。

(2)拼成的是两个角相等,且有一个角是直角的三角形。

(3)拼成的是两个角相等,且有一个角是钝角的三角形。—

反馈:那位同学愿意到前面来展示你的结果。

【设计意图:递进的两道题知识点应用的题目,把数学知识与生活紧密联系,培养了学生的求异思维,也感受到解决问题策略的多样性。】

四、拓展练习。(机动)(4分钟)

1、那此刻同学们看我手中拿着的是一个什么图形(师手拿三角形)剪下一个角也是一个(小三角形),剪下的小三形的内角和是多少度?那么剩下的图形是多少度?还原成一个大三角形又是多少度?(2分钟)

【设计意图:旨在加深对概念的理解,进一步明确三角形的内角和是180度,这与它的大小开关无关】

2、运用三角形的内角和是180度,我们得到任意一个四边形的内角和是多少度(360度)那么(课件出示)五边形、六边形等这些多边形的内角和你们能求出吗?请同学们下去试一试。【让我们带着问题走进课堂,又带着问题走出课堂……】(2分钟)

[设计意图:适度的延伸,激发学生广阔的想象空间,实践探索的欲望,做到让不同的学生学习不同的数学。]

五、总结(2分钟)

这天这节课你有什么收获?有什么遗憾?你还想明白些什么?

六、板书设计:

三角形内角和等于1800!

教学反思:三角形的内角和原本是初中一年级的资料,新课标把三角形的内角和作为四年级下册中三角形的一个重要组成部分,它是学生学习三角形内角关系和其它多边形内角和的基础。很多学生已经明白了三角形的内角和是180度,但是为什么师80度,是不是所有的三角形内角和都是180度,就成为了学生学习的重点与难点。因此让学生经历研究的过程,探索三角形内角和就成了本节课的重点。既让学生经历“再创造”----自己去发现、研究并创造出来。教师的任务不是把现成的东西灌输给学生,而是引导和帮忙学生去进行这种“再创造”的工作,最大限度调动其用心性并发挥学生能动作用,从而完成对新知识的构建和创造。本节课基本到达了要求,具体表此刻以下几个方面。

1、不断创设问题情景,激发了学生的探究兴趣。

对于小学生来说。学习的用心性首先来源于兴趣,兴趣是学习的最佳动力。如何让学生产生兴趣,要不活动本身搞笑,要不就是教师不断创设问题情景,呈现给学生“十分性”的问题,使学生感到奇异,激发学生参与学习活动的欲望,并兴趣盎然的投入到学习活动中去。本节课一开始透过一个“猜谜”的游戏让学生感觉搞笑,之后设置了一个悬念:为什么看到一个直角或钝角就能够决定出是直角三角形或钝角三角形,而看到一个锐角却不能判定是锐角三角形?在惊奇中产生了强烈的“要讨个说法”的学习兴趣。当这个问题解决时,又一个问题随之而来“既然每一个三角形都两个锐角,那么为什么不会有两个直角或两个钝角呢?”给学生造成一种急切期盼的心理状态,具有强烈的诱惑力,激起学生探究和解决问题的浓厚兴趣,将学生自然的引入到对新知的探究中。

2、为学生营造了探究的情境。

学习知识的最佳途径是由学生自己去发现,因为透过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应带给给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。上述教学中,我在引出课题后,引导学生自己提出问题并理解内角与内角和的概念。在学生猜测的基础上,再引导学生透过探究活动来验证自己的观点是否正确。当学生有困难时,教师也参与学生的研究,适当进行点拨。并充分进行交流反馈。给学生创造了一个宽松和谐的探究氛围。当学生验证掌握了三角形的内角和后,教师又及时提出:‘“你能研究出任意四边形、五边形、六边形甚至一百边形的内角和是多少度吗”,把课堂研究引向课外研究。

启示:

为了有效地上好课,教师无疑应当根据教学目标和课程资料,精心地设计教学过程。但是,这种设计不应当是铁定的限制教师教学框子,课堂上的教学操作也不应当是“教案剧”的照本上演。教学应对的是一个个活生生的、富有个性、具有独特生活经验的学生。课堂总是处于一种流变的状态,课堂上教学的情境无时不在变化,学生学习的心态在变化,知识经验的积累状况也在变化,因此,我们教师在备课的过程中,要充分预计学生已有的知识水平,站在学生的角度来思考:如果自己是学生,我已懂了哪些知识?还有什么问题?教什么和怎样教,做到以“学”定“教”。在具体实施过程中,我们更应充分运用自己的教育机智,仔细倾听学生的发言,开放地吸纳各种信息,善于捕捉教育契机,及时调控自己的教学行为。只要坚持做到“为学习而设计”、“为学生的发展而教”,那么我们的课堂将会更加生机勃勃,我们的学生就会产生智慧和欢乐,萌发出创造的火花。

附:《三角形内内角和》课前调查问卷

在你认为正确的答案后面“√”。

1、你明白有关三角形内角和的一些知识么?

A、明白B、不明白

我明白(知识)

2、三角形的内角和是()度。

3、所有的三角形的内角和都是相等的么?

A、相等B、不相等

篇14:三角形内角和教学设计

“三角形的内角和”教学设计与评析

【教学资料】

《义务教育课程标准实验教科书数学(人教版)》四年级下册第五单元第85页

【教学目标】

1、透过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

2、透过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想.

3、透过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践潜力.

【教学重难点】理解并掌握三角形的内角和是180度

【教具学具准备】

多媒体课件、各类三角形、长方形、正方形、量角器、剪刀、固体胶、活动记录表等。

【教学流程】

(一)创设情境,激发兴趣

此刻正是春暖花开,万物复苏的季节。在这完美的日子里,我们相聚在那里,刘老师十分高兴认识大家,你看把蝴蝶也引来了。(课件)

师:请大家仔细观察,它把这条绳子围成了什么三角形?

(课件)

师:请大家仔细想一想,这三个三角形在围的过程中什么变了?什么没变?

生答

师:这节课我们一齐来研究三角形的内角和。(板书:三角形的内角和)

【评析:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习热情。】

(二)动手操作,探索新知

1、揭示“内角”和“内角和”的概念

(1)“内角”的概念

(师手拿一个三角形)这个三角形的内角在哪?谁来指给大家看。一个三角形有几个内角啊?

每人从学具筐中任选一个三角形,指出它的内角。

(2)“内角和”的概念

师:大家明白了什么是三角形的内角,那什么叫“内角和”呢?

师小结:三角形的内角和就是三个内角的度数之和。

2、猜测内角和

(1)师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗?

(2)直角三角形与钝角三角形同上。

(3)师:看来大家都认为三角形的内角和是180o,但这仅仅是我们的一种猜测,有了猜测就能够下结论了吗?我们还需要进一步的验证.

3、动手验证,汇报交流

(1)介绍学具筐

刘老师为每个小组准备了一个学具筐,里面有不同的学习材料,或许这些材料会对你有所启发,帮忙你想出好办法。每人此刻都认真的想一想,你打算怎样来验证三角形的内角和不是180o呢?

(2)生独立思考,动手操作

(3)组内交流

经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。

(4)全班汇报交流

师:来吧孩子们,该到全班交流的时候了.谁愿意先把自己的方法与大家一齐分享。

A、测量法

活动记录表

三角形的形状每个内角的度数三个内角和

∠1∠2∠3

学生汇报测量结果。

师:刚才大家都认为三角形的内角和是180度,但量的结果有的是180度,有的不是180度,这是怎样原因呢?

生发表观点

师小结:看来采用测量的方法会有误差,学习数学要用这种严谨的态度来对待,咱们再看看别的方法。

B、撕拼法

请用撕拼方法的学生上台展示撕拼的过程。

师:你是怎样想到把三角形撕下来拼成一个平角来验证的呢?

师评价:你把本不在一齐的三个角,透过移动位置,把它转化成一个平角来验证,还用了转化的思想,你真了不起。

师:透过他们三个人的验证,你得到了什么结论?

C、其他方法

师:条条大路通罗马,还有别的验证方法吗?

如果学生出现把两个完全相同的直角三角形拼成一个长方形来验证。

师追问:这种方法真的很简单,但它只能证明哪一类的三角形呢?

【评析:《标准》指出:“教师应激发学生的用心性,向学生带给充分从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”在教学设计中刘老师注意体现这一理念,允许学生根据已有的知识经验进行猜测,在猜测后先独立思考验证的方法,再进行小组交流。给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列实验活动中理解和掌握三角形内角和是180°这个图形性质。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。】

4、科学验证方法

师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,明白吗?数学家在证明这一猜想时,也用了转化的思想,一齐来看(看课件)

【评析:一方面使学生为自己猜想的结论能被证明而产生满足感;另一方面使学生体会到数学是严谨的,从小就就应让学生养成严谨、认真、实事求是的学习态度。】

(三)课外拓展,积淀文化

师:明白三角形内角和的秘密最早是由谁发现的吗?(放课件)

师:善于数学发现和思考使帕斯卡走上了成功的道路。这节课才10岁的我们也用自己的智慧发现了帕斯卡12岁时的数学发现,我们同样了不起,刘老师为大家感到骄傲。

【评析:适当的引入课外知识,它既能够激发学生的学习兴趣,又有机的渗透了向帕斯卡学习,做一个善于思考、善于发现的孩子,对学生的情感、态度、价值观的构成与发展能起到了潜移默化的作用。】

(四)应用新知,解决问题

明白了这个结论能够帮忙我们解决那些问题呢?

1、把两个小三角形拼成一个大三角形,大三角形的内角和是多少度?为什么?

师:大三角形的内角是哪些?指出来

师:当把两个三角形拼在一齐时,消失了两个内角,正好是180°,所以大三角形的内角和还是180度,如果把三角形分成两个小三角形呢?

师小结:三角形无论大小,内角和都是180°。

【评析:透过课件动态演示两个三角形分与合的过程,让学生进一步理解三角形内角和等于180度这个结论,使学生认识到三角形的内角和不因三角形的大小而改变。】

2、想一想,做一做

在一个三角形ABC中,已知A45°,B85o,求с的度数。

在一个直角三角形中,已知с52o,求Α的度数。

爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

【评析:将三角形内角和知识与三角形特征有机结合起来,使学生综合运用内角和知识和直角三角形、等腰三角形等图形特征求三角形内角的度数。】

3、思考:

你能画出一个有两个直角或两个钝角的三角形吗?为什么?

【评析:将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形、钝角三角形中角的特征,较好地沟通了知识之间的联系。】

(五)全课小结,完善新知

1学生谈收获

2师小结

这天我们收获的不仅仅仅是知识上的,还有情感上的,思想方法上的,还认识了一位了不起的科学家帕斯卡,因为他的好奇与不满足让我们记住了他。相信在座的每一位只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来某一天你也会像他一样伟大。

【评析:这样用谈话的方式进行总结,不仅仅总结了所学知识技能,还体现了学法的指导,增强了情感体验。】

【总评】整节课刘老师透过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体此刻以下几个方面:

1、精心设计学习活动,让每一个学生经历知识构成的过程。刘老师为学生带给了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作潜力、推理归纳潜力,实现学生对知识的主动建构。

2、立足长远,注重长效,不仅仅关注知识和潜力目标的落实,更注重数学思想方法的渗透。在验证三角形内角和是180度的过程中,教师有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。

3、遵循教材,不唯教材。本节课上,刘老师延伸了教材,介绍了科学验证三角形内角和的方法以及这一结论的发现者帕斯卡的故事,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生用心向上的学习情感。

整节课的学习资料,突出了数学学科的实质,抓住了数学的本质,使学生在动手“做”数学的过程中寻求成功,在成功中享受快乐,在快乐中不断超越,在超越中体验成长.

篇15:三角形内角和教学设计

三角形内角和教学设计

教学目标

(一)知识与技能:掌握“三角形内角和定理”的证明及其简单应用,让学生探索发现三角形的内角和是180。

(二)过程与方法:通过量算、撕拼、折拼等活动培养学生观察、操作、探究、归纳、概括、反思等能力和初步的空间想象力,感受数学的转化思想;发展学生的空间观念和初步的逻辑思维能力;能运用所学知识解决简单的问题,训练学生对所学知识的运用能力。

(三)情感态度与价值观:

1、渗透转化迁移思想,培养学生大胆质疑的勇气和严谨科学的精神,及与他人合作交流的意识。

2、让学生切实感受到从实验中得到的现象,经过简单的推理证明以后可以成为我们的一般公理,初步感受从个别到一般的思维过程。

教学重点:

让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程;知道三角形的内角和是180度并且能应用。

教学难点:

三角形内角和是180度的探索和验证过程。

教学过程:

一、激趣引入

1、画三角形

2、画有两个直角的三角形

3、认识三角形的内角,猜测内角和。

二、探究新知

(一) 研究特殊三角形的内角和(三角尺)

60°+30°+90°=180°

45°+45°+90°=180°

(二)操作、验证完成一般三角形的内角和是180度的.证明。

1、小组合作完成

2、汇报

第一种:通过度量完成。

第二种:通过撕拼或者折拼完成。

第三类:通过长方形推算得出。

其他类。

3、小结:

(课件演示)刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是180°,你们真不错,让我们带着自豪的语气大声地读出“三角形的内角和是180°”

4、知识升华:

大小不一的三角形的内角和各是多少?

一个三角形分成两个三角形,他们的内角和各是多少?

三、实践检验

1、为什么不能画有两个直角的三角形?哪能画含有两个钝角的三角形吗?含有两个锐角呢?

2、老师不小心把墨水倒在了三角形上,你知道它的度数吗?

3、数学日记。

四、评价树

你对自己的评价。

结束语:

三角形是一棵大树,内家和只是它的一片叶子;

数学是一棵大树,三角形只是它的一片叶子;

生活是一棵大树,数学只是它的一片叶子,

让我们欣赏着、享受着三角形为生活添得美!

篇16:三角形内角和教学设计

三角形内角和教学设计模板

背景分析:

在学习“三角形的内角和”之前,学生已经学习了三角形的特性和分类,知道平角的度数是180°,并且能够用量角器测量角的大小。“三角形的内角和是180°”是三角形的一个基本特征,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形三个内角之间的关系,也为以后进一步学习几何知识打下良好的学习基础。

教学目标:

1.通过测量、剪拼、折拼等活动让学生全面经历探索和发现“三角形的内角和等于180°”的过程。

2.会用“三角形的内角和等于180°”这个结论进行一些简单的计算和推理。

3.体会数学学习的魅力,体验探究学习的乐趣。

教学重难点:

探索和发现三角形的内角和等于180°。

教具准备:

多媒体课件、一副三角板、量角器、三角形纸片。

学具准备:

每个小组准备4个量角器、4把剪刀、两副三角板、两个学具袋,两个学具袋中各装有2个完全相同的锐角三角形、1个直角三角形、一个钝角三角形。其中1号学具袋中,还装有表格纸一张。

教学过程:

一、导入课题

1、故事引入,激发兴趣

同学们,今天,老师给大家带来一个小故事,想听吗?

课件显示数学家-----帕斯卡的图片

师:孩子们,你们认识他吗?这可是位了不起的人物,他的名字叫帕斯卡。他可是位数学奇人,从小就痴迷于数学,可帕斯卡的父亲却不支持他学习数学,因为,他从小就体弱多病,然而,这并不能阻挡帕斯卡对数学的热爱,一个个数学问题就像磁石一样深深地吸引着帕斯卡。他常常背着父亲一个人偷偷琢磨。12岁那年,他发现了一个改变他一生的数学问题,当父亲知道后激动的热泪盈眶。从此以后,父亲不仅支持他学习数学,而且还尽全力帮助他。在父亲的帮助下,帕斯卡成为了世界著名的数学家、物理学家。

师:究竟是什么发现让父亲的态度发了180°的大转弯呢,想知道吗?

揭示并板书课题:三角形的内角和。生齐读课题。

2、明确目标

学贵有疑,看到这个课题,你想知道些什么?或者你有什么疑问?(什么是三角形的内角和?三角形的内角和是多少度?)

3、效果预期

带着这些问题,我们一起走进今天的探究之旅,老师期待大家的.精彩表现,大家准备好了吗?。

〖评析〗教师用数学家生动的励志故事导入新课,从情绪上深深感染了学生,激发了学生的学习兴趣,唤起了学生的求知欲望,同时,也为数学文化的引入作了必要的铺垫。

二、民主导学

1、任务呈现

(1)认识内角、内角和

师:同学们还认识这些三角形宝宝吗?三角形按角分,能分为锐角三角形、钝角三角形、直角三角形.

师:老师手里拿的是?(三角板)它是什么三角形?(直角三角形)老师把它打在白板上。

师:每个三角形的里面都有3个角,我们把它们称之为三角形的内角,为了方便,我们给他们分别编上编号∠1、∠2、∠3,

师:请同学们拿出2号袋中的三角形,快速找出三角形的三个内角,然后像老师这样给他们分别标上∠1、∠2、∠3

师:这个三角板上的三个内角分别是多少度呢?现在我们把这三个内角的度数加起来是(180°),算得真快,也就是说这个三角形的内角和180°这个三角形的内角和呢?也是180°也就是这两个三角形的内角和都是180°。

师:请大家看这里,如果把这个三角形的三个内角搬个家,都搬到一起,能拼成我们学过的什么叫?(平角)平角是多少度?(180°)

师:这是我们学过的特殊三角形,对吧,那么像黑板上这些一般的三角形内角和会是多少度呢?我们先来猜想一下好不好?谁来猜?同学们都认为三角形的内角和是180°,但口说无凭呀,到底是不是180°我们应该验证一下,对吧?

师:我们现在开始验证好吗?动手之前,请听好活动要求

屏幕出示要求,指名学生读:

想一想,你打算怎样验证,在小组内交流你的想法,共同确定一种验证方法;

想用量的方法验证的小组,请取出1号袋中的表格和三角形,根据表格上的内容完成相应的测量、计算,并向小组长汇报,小组长负责填空汇总;

想用其它方法验证的小组,请取出2号袋中的三角形,小组长做好分工,每两个同学用一个三角形进行验证或一人单独验证,动手前,先讨论讨论该怎么做,然后试着拼一拼;

验证结束后,小组内交流你们的发现,回忆验证过程,做好汇报准备。

2、自主学习

学生分组活动,教师巡视指导。(用量的方法的要填写学具袋中的表格)

3、展示交流(提示:汇报时,要说清楚你研究的三角形的类型)

师:来吧孩子们,该到全班交流的时候了.哪个小组愿意先把你们的成果与大家一起分享。

A、剪拼法(撕拼法)

这个小组通过剪拼得出三角形的内角和是180

B、折拼法

刚才拼的过程中,老师发现有个孩子特别的难过,因为他觉得这些三角形宝宝太可怜了,我们把这些三角形宝宝都大卸三块儿了,的确是这样,现在动脑筋想想,在不破坏三角形的情况下,能不能想办法把三角形的三个内角弄成一个平角?(折)那你们就试试,(行,不行)到底行不行,老师给大家演示一下,先标出三个内角,把∠1折下来,把∠2、∠3分别靠过来,现在观察一下,这三个角通过折的方法拼成平角了吗?行还是不行,刚才说不行的孩子一定没按这种方法折,下面请按老师的方法试试

C、测量法

用量的方法的小组,你们得出的三角形的内角和都是180°,不是180°的请举手,一样的三角形为何测量得出的结果不一样,是什么原因呢?(误差)由于测量工具测量方法等原因,会难免会有误差,正因为这些误差,导致测量结果五花八门,各不相同,现在你们的疑惑解开了吗?

刚才我们猜想三角形的内角和可能是180°,现在你想说什么?(一定、肯定、绝对、百分之百)

小结:通过刚才同学们的验证,得出了什么结论(板书:结论)三角形的内角和是180°。大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,都把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,都用了转化的策略(板书:转化)。希望大家能把转化的方法运用到今后的学习中去,去解决更多的数学问题。

〖评析〗探索三角形内角和的过程,既是解决数学问题的过程,也是培养学生动手实践能力和科学精神的过程。在这一过程中,学生既经历了新知的形成过程,又获得了成功的体验。

4、数学文化介绍

你们想知道12岁的帕斯卡是用什么方法研究的吗?谁来猜一猜?

生:

师:(边演示边介绍)他把长方形分成两个完全相同的直角三角形,其中一个直角三角形的内角和就是180°

师:接下来,他就想其他三角形的内角和是不是180°呢?于是,他任意画了一个三角形并做高,谁看懂他的意思了?

生:分成了两个直角三角形。

师:你真会观察,请大家看,∠1+∠2=

生:90°

师:∠3+∠4=

师:那么这个三角形的内角和就是

生:180°

师:由此说明任意三角形的内角和都是180°。你们觉得帕斯卡的方法怎么样?

生:巧妙!

师:是的,他的方法太巧妙了。今天同学们用自己的聪明才智也研究出了三角形的内角和是180°,老师相信你们的父亲也会为你们感到骄傲!下面,我们就用这个结论,来解决一些数学问题。

〖评析〗通过对数学文化的介绍,让学生了解帕斯卡的证明过程,既开阔了学生的知识视野,要引导学生的思维由具体到抽象,培养了思维的严谨性,同时激发了学生对数学家的崇敬之情,让学生体验到数学逻辑的论证之美,进而产生了对数学的热爱。

5、练习

(1)猜一猜:在一个三角形中,∠1=30°,∠2=50°,∠3等于多少度?师:让学生回答:说说怎么想的?

(2)2、算一算:三角形每个内角是多少度?师:课件出示后,请大家拿出答题纸快速解答下面的问题:

求出等边三角形每个角的度数?

等腰三角形顶角96°,底角是多少度?

直角三角形的一个锐角是40°,另一个锐角是多少度?

〖评析〗练习设计科学合理,层次清晰,针对性强,让学生较好地巩固了所学知识;拓展性练习不仅加深了学生对新知识的理解和掌握,而且要满足了不同层次学生的认知需要,同时培养了学生思维的灵活性,促进了思维的发展。

三、检测导结(下面进入检测环节,大家愿意接受挑战吗?)

1、目标检测(见检测卡)

2、结果反馈

集体订正

课外作业:那么四边形、五边形、六边形的内角和分别是多少呢?作为课后作业,课后探究。

3、反思总结

回顾一下今天学的内容,你有什么收获?

大家真的非常了不起,不仅学到了数学知识,更重要的是经历了猜想、验证、得出结论、应用的科学探究的过程,老师送给大家一句话:“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的。——毕达哥拉斯”

其实在历史上有许多数学家都曾经研究过三角形的内角和,最早研究的谁,你们知道吗?

生:帕斯卡

师:NO,另有其人,如果大家感兴趣,课后可以去查一查。

〖评析〗引导学生回顾本节课所学知识,有助于对所学内容的内化和提升。同时,将数学文化自然延伸到到课外,使数学文化贯穿整节课的始终。

篇17:三角形内角和教学设计

【教材分析】

《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握三角形的内角和是180度这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了试一试,练一练的内容。已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】

经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

【学习目标】

知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

情感目标: 让学生体会几何图形内在的结构美。

【教学过程】

一、情景激趣,质疑猜想。

播放动画片:在图形王国中,有一天三角形大家庭里为三角形内角和的大小爆发了一场激烈的'争吵。

钝角三角形大声叫着:我的钝角大,我的内角和一定比你们的内角和大。锐角三角形也不示弱:我的锐角虽然比钝角小,但我的内角和并不比你小。直角三角形说:别争了,三角形的内角和都是180。我们的内角和是一样大的。

师:想一想,什么是三角形的三个内角的和。

生:三角形的三个内角的度数和。

师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

学生进行猜想,自由发言。

(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)

二、自主探究,验证猜想

师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180,你能设法验证这个猜想吗?

生1:能。我量出三角形的三个内角和度数,加起来是否接近180(量的时候可能会有些误差)。

生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。

生3:我把三角形的三个角撕下来,拼一拼是否180。

生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。

师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上1、2、3,以免在剪拼时把内角搞混了。)

学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

(设计意图:验证猜想为学生提供了做数学的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)

三、交流评价,归纳结论。

学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

实验报告单

实验名称

三角形内角和

实验目的

探究三角形内角和是多少度。

实验材料

尺子

剪刀

量角器

锐角三角形纸片

直角三角形纸片

钝角三角形纸片

我的方法

我的发现

我的表现

自评

互评

学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

师生共同归纳,得出结论:

篇18:三角形内角和教学设计

(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)

四、分层练习,巩固创新。

①课件出示:

师:这个三角形是什么三角形?知道几个内角的度数?

生:直角三角形,知道一个角是30,还有一个角是90。A=90-30=60。

师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。

学生做完后反馈讲评时让学生说说自己的方法。

生1:用三角形内角的和(180)减去30再减去90,算出A是60。

A=180-30-90=60。

生2:先用30加上90得120再用180减去120也可得A =60。

②学生完成完成P29的第一题。

引导学生按照前面的方法独立完成,教师巡视,集体订正。

③猜一猜三角形的另外两个角可能各是多少度。

同桌同学互相说一说。(答案不唯一)

④小组操作探究活动。

让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。

方 法

四边形内角和

用量角器量出每个内角的度数,并相加。

把四边形四个角剪下来,拼在一起。

把四边形分为两个三角形。

填表后让学生想一想、互相说一说,四边形内角和是多少度?

(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)

篇19:三角形内角和教学设计

一、教学目标:

1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。

2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。

3、在探索和发现三角形内角和的过程中获得成功的体验。

二、教学重、难点:

重点:探索并发现三角形内角和等于180°。

难点:运用三角形内角和等于180°的性质解决一些实际问题。

教具:课件、三角形若干。

学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。

三、教学过程

(一)创设情境,导入新课

我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?

教师放课件。

课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”

都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。

(板书课题:三角形内角和)

(二)自主探究,发现规律

1、探究三角形内角和的特点。

(1)检查作业,并提出要求:

昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。

小组活动记录表

小组成员的姓名

三角形的形状

每个内角的度数

三角形内角的和

(要求:填完表后,请小组成员仔细观察你发现了什么?)

②小组合作。

会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。

各组长进行汇报。发现了三角形的内角和都是180°左右。

师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。

2、验证推测。

那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。

通过我们的验证我们可以得出三角形的内角和是180°。

板书:(三角形内角和等于180°。)

3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)

出示书28页,试一试第3题,并讲解。

说明:在直角三角形中一个锐角等于30°,求另一个锐角。

生独立做,再订正格式、以及强调不要忘记写度。

小结:同学们有没有不明白的地方?如果没有我们来做练习。

(三)巩固练习,拓展应用

1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?

完成,并填在书上。讲一讲直角三角形还有什么解法。

2、出示29页第2题。

说明:一个钝角三角形说:我的两个锐角之和大于90°。

一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。

3、画一画:

出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?

三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

(四)课堂总结

让学生说说在这节课上的收获!

篇20:三角形内角和教学设计

教学目标:

1.掌握三角形内角和定理及其推论;

2.弄清三角形按角的分类,会按角的大小对三角形进行分类;

3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

教学重点:

三角形内角和定理及其推论。

教学难点:

三角形内角和定理的证明

教学用具:

直尺、微机

教学方法:

互动式,谈话法

教学过程:

1、创设情境,自然引入

把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

问题2你能用几何推理来论证得到的关系吗?

对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

2、设问质疑,探究尝试

(1)求证:三角形三个内角的和等于

让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

问题1观察:三个内角拼成了一个什么角?

问题2此实验给我们一个什么启示?

(把三角形的三个内角之和转化为一个平角)

问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

学生回答后,电脑显示图表。

(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?

问题2三角形一个外角与它不相邻的两个内角有何关系?

问题3三角形一个外角与其中的一个不相邻内角有何关系?

其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

3、三角形三个内角关系的定理及推论

引导学生分析并严格书写解题过程

篇21:三角形内角和教学设计

【教材内容】:

北师大版四年级数学下册

【教学目标】:

1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

【教学重点和难点】:

重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。

【教材分析】

《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。

【教学过程】

一、创设情境,激发兴趣。

出示课件,提出两个两个疑问:

1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?

2、三个形状不一样的三角形的争论。我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?

二、初建模型,实际验证自己的猜想

在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。

三角形的形状

三角形每个内角的度数

内角和

锐角三角形

钝角三角形

直角三角形

等腰三角形

等边三角形

三、再建模型,彻底的得出正确的结论

因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。

四、应用新知,巩固练习

1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)

2、试一试,在直角三角形中已知其中的一个角求另一个角的度数

3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。

4、说一说,判断三角形的两个锐角的和大于90度;直角三角形的两个两个锐角的和等90度;等腰三角形沿着高对折,每个三角形的内角和是90度。这些说法是否正确?由两个三角形拼成一个大的三角形,大三角形的内角和是360度,对吗?

五、拓展与延伸

通过三角形的内角和是180度的事实来探讨四边形、五边行的内角和。

篇22:三角形内角和教学设计

教学内容:

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:

1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3.培养学生动手动脑及分析推理能力。

重点难点:

掌握三角形的内角和是180°。

教学准备:

三角形卡片、量角器、直尺。

导学过程

一、复习

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)

二、新知

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)

1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)

(4)汇报结论(清楚明白的给小组加优秀10分)

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)

三、知识运用(课件出示练习题,生解答)

1、填空

(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).

(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。

(3)等边三角形的3个内角都是( )。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。

(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。

2、判断

(1)一个三角形中最多有两个直角。 ( )

(2)锐角三角形任意两个内角的和大于90。 ( )

(3)有一个角是60的等腰三角形不一定是等边三角形。 ( )

(4)三角形任意两个内角的和都大于第三个内角。 ( )

(5)直角三角形中的两个锐角的和等于90。 ( )

四、拓展探究

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

六、谈谈自己本节课的收获。

教学反思

今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。

任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。

如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。

如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。

本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。

给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。

前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。

总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。

篇23:三角形内角和教学设计

【教材分析】

《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】

经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

【学习目标】

知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

情感目标: 让学生体会几何图形内在的结构美。

【教学过程】

一、情景激趣,质疑猜想。

播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。

钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”

师:想一想,什么是三角形的三个内角的和。

生:三角形的三个内角的度数和。

师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

学生进行猜想,自由发言。

(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)

二、自主探究,验证猜想

师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗?

生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。

生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。

生3:我把三角形的三个角撕下来,拼一拼是否180°。

生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。

……

师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)

学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)

三、交流评价,归纳结论。

学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

实验报告单

实验名称

三角形内角和

实验目的

探究三角形内角和是多少度。

实验材料

尺子

剪刀

量角器

锐角三角形纸片

直角三角形纸片

钝角三角形纸片

我的方法

我的发现

我的表现

自评

互评

学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

师生共同归纳,得出结论:

三角形内角和等于180°

(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)

四、分层练习,巩固创新。

①课件出示:

师:这个三角形是什么三角形?知道几个内角的度数?

生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。

师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。

学生做完后反馈讲评时让学生说说自己的方法。

生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。

∠A=180°-30°-90°=60°。

生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。

②学生完成完成P29的第一题。

引导学生按照前面的方法独立完成,教师巡视,集体订正。

③猜一猜三角形的另外两个角可能各是多少度。

同桌同学互相说一说。(答案不唯一)

④小组操作探究活动。

让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。

方 法

四边形内角和

用量角器量出每个内角的度数,并相加。

把四边形四个角剪下来,拼在一起。

把四边形分为两个三角形。

填表后让学生想一想、互相说一说,四边形内角和是多少度?

(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)

篇24:三角形内角和教学设计

教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。

教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。

教学目标:

1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。

2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。

3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

教学重点:理解并掌握三角形的内角和是180°。

教学难点:验证所有三角形的内角之和都是180°。

教具准备:多媒体课件、各种三角形等。

学具准备:三角形、剪刀、量角器等。

教学过程:

一、出示课题,复习旧知

1、认识三角形的内角。

(1)复习三角形的概念。

(2)介绍三角形的“内角”。

2、理解三角形的内角“和”。

【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。

二、动手操作,探究新知

1、通过预习,认识结论,提出疑问

2、验证三角形的内角和

(1)用“量一量、算一算”的方法进行验证

①汇报测量结果

②产生疑问:为什么结果不统一?

③解决疑问:因为存在测量误差。

(2)用“剪一剪、拼一拼”的方法进行验证

①指导剪法。

①分别拼:锐角三角形、直角三角形、钝角三角形。

③验证得出:三角形的内角和是180°。

(3)用“折一折”的方法进行验证

①指导折法。

①分别折:锐角三角形、直角三角形、钝角三角形。

③再次验证得出:三角形的内角和是180°。

3、看书质疑

【设计理念】此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。

三、实践应用,解决问题:

1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

2、求出三角形各个角的度数。(图略)

3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是

70°,它的顶角是多少度?

4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)

5、数学游戏。

【设计理念】练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。

四、总结全课、延伸知识:

1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?

2、知识延伸:给学生介绍一种更科学的验证方法——转化。

【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。

板书设计: 三角形的内角和是180°

方法:①量一量 拼角(略)

②拼一拼

③折一折

【设计理念】此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。

篇25:三角形内角和教学设计

教学要求

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

教学重点

三角形的内角和是180°的规律。

教学难点

使学生理解三角形的内角和是180°这一规律。

教学用具

每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

教学过程:

一、出示预习提纲

1、三角形按角的不同可以分成哪几类?

2、一个平角是多少度?1个平角等于几个直角?

3、如图,已知∠1=35°,∠2=75°,求∠3的度数。

二、展示汇报交流

1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

4、指名学生汇报各组度量和计算的结果。你有什么发现?

5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

提示学生,可以把三个内角拼成一个角,就只需测量一次了。

7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。

12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

13、出示教材85页做一做。让学生试做。

14、指名汇报怎样列式计算的。两种方法均可。

∠2=180°—140°—25°=15°

∠2=180°(140°+25°)=15°

课后反思:

对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。

篇26:三角形内角和教学设计

教学目标:

1.学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:课件、表格、学生准备不同类型的三角形各一个,量角器。

教学过程:

一、激趣引入

1、猜谜语

师:同学们喜欢猜谜语吗?

生:喜欢。

师:那么,下面老师给大家出个谜语。请听谜面:

形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

生:三角形

2、介绍三角形按角的分类

师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类

师分别出示卡片贴于黑板。

3、激发学生探知心里

师:大家会不会画三角形啊?

生:会

师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!!

生:试着画

师:画出来没有?

生:没有

师:画不出来了,是吗?

生:是

师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)

二、探究新知

1、认识三角形的内角

看看这三个字,说说看,什么是三角形的内角?

生:就是三角形里面的角。

师:三角形有几个内角啊?

生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)

师:你知道什么是三角形“内角和”吗?

生:三角形里面的角加起来的度数。

2、研究特殊三角形的内角和

师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?

生:算一算:90°+60°+30°=180°90°+45°+45°=180°

师:180°也是我们学习过的什么角?

生:平角

师:从刚才两个三角形的内角和的计算中,你发现了什么?

3、研究一般三角形的内角和

师:猜一猜,其它三角形的内角和是多少度呢?

生:

4、操作、验证

师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

要求:

(1)每4人为一个小组。

(2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?

(3)验证的方法不只一种,同学们要多动动脑子。

师:好,开始活动!

师:巡视指导

师:好!请一组汇报测量结果。

生:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。

生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。

师:好!非常好!

师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)

生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。

师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)

现在老师问同学们,三角形的内角和是多少?

生:180度。

师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

三、解决疑问

师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?

生:没有

师:那你能用这节课的知识解释一下为什么画不出来吗?

生:两个直角是180度,没有第三个角了。

师:如果想画出有两个角是钝角的三角形你能画出来吗?

生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。

师:学会了知识,我们就要懂得去运用。

四、巩固提高

1.填空。

(1)三角形的内角和是()度。

(2)一个三角形的两个内角分别是80°和75°,它的另一个角是()。

2.求下面各角的度数。

(1)∠1=27°∠2=53°∠3=()这是一个()三角形。

篇27:三角形内角和教学设计

设计思路

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。

最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

教学目标

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教材分析

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备

多媒体课件、学具。

教学过程

一、激趣引入

(一)认识三角形内角

师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……

师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:只能画长方形。

师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

生:想。

师:那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究新知

(一)研究特殊三角形的内角和

师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

师:也就是这个三角形各角的度数。它们的和怎样?

生:是180°。

师:你是怎样知道的?

生:90°+60°+30°=180°。

师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

生:90°+45°+45°=180°。

师:从刚才两个三角形内角和的计算中,你发现什么?

生1:这两个三角形的内角和都是180°。

生2:这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1、猜一猜。

师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

2、操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

(2)小组汇报结果。

师:请各小组汇报探究结果。

生1:180°。

生2:175°。

生3:182°。

(三)继续探究

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?

生:把它们剪下来放在一起。

1、用拼合的方法验证。

师:很好,请用不同的三角形来验证。

师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。

2、汇报验证结果。

师:先验证锐角三角形,我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。

生3:钝角三角形的内角和还是180°。

3、课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的结论?

生:三角形的内角和是180°。

(教师板书:三角形的内角和是180°学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

篇28:三角形内角和教学设计

设计思路

本节课我先引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再引导学生通过折角的方法也发现这个结论,由此获得三角形的内角和是180°的结论。概念的形成没有直接给出结论,而是通过量、算、拼、折等活动,让学生探索、实验、发现、推理归纳出三角形的内角和是180°。

最后让学生运用结论解决实际问题,练习的安排上,注意练习层次性和趣味性,还设计了开放性的练习,由一个同学出题,其它同学回答。先给出三角形两个内角的度数,说出另外一个内角,有唯一的答案。给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中拓展学生思维。

教学目标

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备

教具:多媒体课件、用彩色卡纸剪的相同的两个直角三角形、一个钝角三角形、一个锐角三角形。

学具:三角形

教学过程

一、引入

(一)认识三角形的内角及三角形的内角和

师:我们已经学习了三角形的分类,谁能说说老师手上的是什么三角形?

师:今天我们来学习新的知识《三角形内角和》,谁能说说哪些角是三角形的内角?(让学生边说边指出来)

师:那三角形的内角和又是什么意思?(把三角形三个内角的度数合起来就叫三角形的内角和。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:……

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究三角形内角和

(一)猜一猜。

师:猜一猜三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

(二)操作、验证三角形内角和是180°。

1、量一量三角形的内角

动手量一量自己手中的三角形的内角度数。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?

学生汇报结果。

师:请汇报自己测量的结果。

生1:180°。

生2:175°。

生3:182°。

……

2、拼一拼三角形的内角

学生操作

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?(学生操作)

生:把它们剪下来放在一起。

师:很好。

汇报验证结果。

师:通过拼合我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。

生3:钝角三角形的内角和还是180°。

课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的结论?

生:三角形的内角和是180°。

(教师板书:三角形的内角和是180°学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

3、折一折三角形的内角

师:除了量、拼的方法,还有没有别的方法可以验证三角形的内角和是180°。

如果学生说不出来,教师便提示或示范。

学生操作

4、小结:三角形的内角和是180°。

三、解决疑问。

师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。

师:在一个三角形中,有没有可能有两个钝角呢?

生:不可能。

师:为什么?

生:因为两个锐角和已经超过了180°。

师:那有没有可能有两个锐角呢?

生:有,在一个三角形中最少有两个内角是锐角。

四、应用三角形的内角和解决问题。

1、下面说法是否正确。

钝角三角形的内角和一定大于锐角三角形的内角和。()

在直角三角形中,两个锐角的和等于90度。()

在钝角三角形中两个锐角的和大于90度。()

④一个三角形中不可能有两个钝角。()

⑤三角形中有一个锐角是60度,那么这个三角形一定是个锐角三角形。()

2、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

3、游戏巩固。

由一个同学出题,其它同学回答。

(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。

(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

4、根据所学的知识算出四边形、正五边形、正六边形的内角和。

五、全课总结。

今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

反思:

在本节课的学习活动过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。再引导学生用折三角形的方法也能验证三角形的内角和是180°。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

但因为是借班上课,对学生了解不多,学生前面的内容(三角形的特性和分类)还没学好,所以有些练习学生就没有预想的那么得心应手,如:知道等腰三角形的顶角求底角的题,学生掌握比较困难。

篇29:三角形内角和教学设计

【教学内容】

《人教版九年义务教育教科书 数学》四年级下册《三角形的内角和》

【教学目标】

1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。

2.让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180 。

3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

【教学重点】

使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。

【教学难点】

通过多种方法验证三角形的内角和是180 。

【教学准备】

课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

【教学过程】

一、激趣导入,提炼学习方法

1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

4.导入新课。

图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)

二、动手操作,探索交流新知

1.分组活动,探索新知

根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

量一量组同学发给以下几种学具:

折一折组同学发给上面的三角形一组。

拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

2.多方互动,交流新知

师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

(1)首先要求学生说一说你们小组是怎样进行探究的。

(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)

(3)请学生说说通过探究活动你们组得出的结论是什么。

师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

引导这一组从探究的过程和结论与同学、老师交流。

师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

同样引导这一组从探究的过程和结论与同学、老师交流。

3.思想碰撞,夯实新知

师:三个徒弟你们能说说谁的方法最好吗?

学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180 大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)

师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180 。(板书:三角形的内角和是180 )

四、走进生活,提升运用能力

1.出示课前那架柁标出它的顶角是120 ,求它的一个底角是多少度?

2.给你三根木条,能做出一个有两个直角的三角形吗?

五、总结

师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?

六、拓展新知,课外延伸

师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

大屏幕出示:

能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

篇30:三角形内角和教学设计

教学内容:

义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.

教学目标:

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备:

多媒体课件、学具。

教学过程:

一、激趣引入

(一)认识三角形内角

1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)

2.请看屏幕(课件演示三条线段围成三角形的过程)。

三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。

(二)设疑,激发学生探究新知的心理

1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

学生安要求画三角形.

2.问:有谁画出来啦?

(课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!

二、动手操作,探究新知

(一)研究特殊三角形的内角和

1.请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)

学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)

这个三角形各角的度数。它们的和是多少?

学生回答:是180°。

追问:你是怎样知道的?

生:90°+45°+45°=180°。

把三角形三个内角的度数合起来就叫三角形的内角和。

板题:三角形内角和

2.(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

90°+60°+30°=180°。

3.从刚才两个三角形内角和的计算中,你发现什么?

这两个三角形的内角和都是180°。这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1.猜一猜。

猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

2.操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

1.所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!

2.每个小组都有不同类型的三角形。每种类型的三角形都需要验证,小组活动的要求如下:课件显示

组长负责填写表格,组员每人负责量一个三角形的每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长.

量一量,完成表格.

三角形的名称

内角和的度数

锐角三角形

直角三角形

(2)小组汇报结果。

请各小组汇报探究结果。

(三)继续探究

没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

1.用拼合的方法验证。

小组内完成,活动的要求同上.

拼一拼,完成表格.

三角形的名称

是否可以拼成平角

锐角三角形

直角三角形

对角三角形

2.汇报验证结果。

先验证锐角三角形,我们得出什么结论?

(锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

直角三角形的内角和也是180°。

钝角三角形的内角和还是180°)。

3.课件演示验证结果。

请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

我们可以得出一个怎样的结论?

(三角形的内角和是180°。)

(教师板书:三角形的内角和是180°学生齐读一遍。)

为什么用测量计算的方法不能得到统一的结果呢?

(量的不准。有的量角器有误差。)

三、解决疑问。

现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

在一个三角形中,有没有可能有两个钝角呢?

(不可能。)

追问:为什么?

(因为两个锐角和已经超过了180°。)

问:那有没有可能有两个锐角呢?

(有,在一个三角形中最少有两个内角是锐角。)

四、应用三角形的内角和解决问题。

1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

2.85页做一做:

在一个三角形中,∠1=140度,∠3=35度,求∠2的度数.

3.88页第9.10题(数学信息较为隐藏和生活中的实际问题)

4.89页16题.思考题

板书设计:

三角形内角和

180°180°180°

三角形内角和180°

篇31:三角形内角和教学设计

一、说教材

北师版八年级下册第六章《证明一》,是在前面对几何结论已经有了一定的直观认识的基础上编排的,而前几册对有关几何结论都曾进行过简单的说理,本章内容则严格给出这些结论的证明,并要求学生掌握证明的一般步骤及书写表达格式。《三角形内角和定理的证明》则是对前几节证明的自然延续。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。

二、说目标

1.知识目标:掌握“三角形内角和定理的证明”及其简单的应用。

2.能力目标培养学生的数学语言表达、逻辑推理、问题思考、组内及组间交流、动手实践等能力。

3.情感、态度、价值观:

在良好的师生关系下,建立轻松的学习氛围,使学生体会获得知识的成就感及与他人合作的乐趣,以增强其数学学习的自信心。

4.教学重点、难点

重点:三角形的内角和定理的证明及其简单应用。

难点:三角形的内角和定理的证明方法的讨论。

三、说学校及学生现实情况

我校是蓝田县一所普通初中,四面非山即岭,距蓝田县城四十里之遥。但由于国家对西部教育的大力支持,学校有远程多媒体网络教室,为师生提供了良好的学习硬件环境。我校学生几乎全部来自本镇农村,而我所教授的八年级四班学生,大多家庭贫苦,所以学习认真踏实,有强烈的求知欲;此外,善于钻研是他们的特点,并且,有较强的合作交流意识。

四、说教法

根据本节课教学内容特点,我采用启发、引导、探索相结合的教学方法,使学生充分发挥学习主动性、创造性。

五、说教学设计

〈一〉、创设情景,直入主题

一堂新课的引入是教师与学生活动的开始,而一个成功的引入,可使学生破除畏难心理,对知识在短时间内产生浓厚的兴趣,接下来的教学活动就变得顺理成章。我的具体做法是:简单回忆旧知识,“证明的一般步骤是什么?”学生轻松做答,我肯定之后紧接着说:“本节课就是用证明的方法学习一个熟悉的结论!是什么呢?请看大屏幕!”。尽量使问题简单化,这样更利于学生投入新课。

〈二〉、交流对话,引导探索

1、巧妙提问,合理引导

证明思想的引入时,问:同学们,七年级时如何得到此结论?(留一定时间让他们讨论、交流、达成共识)学生回答后,我及时肯定并鼓励后抛出问题:他们的共同之处是什么?学生容易回答:凑成一平角。我说:很好!那你们用这样的思想能证明这个命题是个真命题吗?赶快试试吧!这样,既引导了证明的方向,又激发了学生的学习兴趣。接下来学生做题,我巡视。同时让一学生板演。

2、恰当示范,培养学生正确的书写能力

在学生做完之后,我与他们一道分析板演同学证明是否合理,并利用多媒体给出正确书写方法。

3、一题多解,放手让学生走进自主学习空间

正因为学生的预习,所以他们证明的方法有所局限,这时,我抛出问题:再想想,还有其他方法吗?将课堂时间又交还他们,将其思维推向高潮。学生思考,继而热烈讨论,此时,我又走到学生中去,对有困难的学生多加关注和指导,不放弃任何一个,同时,借此机会增进教师与学困生之间的情谊,为继续学习奠定基础。最后,请有新方法的同学叙述其思想方法,我用大屏幕展示不同做法的合情推理过程。

4、展示归纳,合理演绎

利用多媒体展示三角形内角和定理的几种表达形式,以促其学以致用。

5、反馈练习

用随堂练习来巩固学生所学新知,另一方面进一步提高学生的书写能力。同时,在他们作完之后,多媒体展示正确写法,加强教学效果。

〈三〉、课堂小结

1 采用让学生感性的谈认识,谈收获。设计问题:

2(1)、本节课我们学了什么知识?

(2)、你有什么收获?

目的是发挥学生主体意识,培养其语言概括能力。

六、说教学反思

本节课主要是以严谨的逻辑证明方法,验证三角形内角和等于180度。让学生充分体会有理有据的推理才是可靠的。而证明思想、书写的培养,是本节课的重点。自主学习、合作交流是新课程理念,也是我本节课的设计意图。从学生课堂表现可以看出,教学效果良好。而学生的一些出乎意料的做法让我倍感惊喜!把学生还给课堂,把课堂还给学生,也是我一贯的做法。

篇32:三角形内角和教学设计

【教材内容】

北京市义务教育课程改革实验教材(北京版)第九册数学

【教材分析】

《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于180°。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°。让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。

【学生分析】

在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

【教学目标】

1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。

2、通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。

3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。

【教学重点】

让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。

【教学难点】

能利用学到的知识进行合情的推理。

【教具学具准备】

课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸

【教学过程】

一、学具三角板,引入新课

1、(出示两个直角三角板),问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)

2、顾名思义一个三角形都有几个角呀?(三个)

3、认识内角

(1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?

(2)这个三角形内有几个内角?(三个)这个呢?(三个)

(设计意图:由学生最熟悉的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)

二、动手操作,探索新知

(一)直角三角形内角和

ⅰ、特殊直角三角形内角和

1、根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。

2、观察这两个三角形的度数,你有什么发现?

生1:都有一个直角,师:那我们就可以说他们是什么三角形?(板书:直角三角形)

生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?

(课件):(1)90°+60°+30°=180°)

那么另一个三角板的三个内角的总度数是多少?

(生回答,师课件:(2)90°+45°+45°=180)

3、你指的哪是180度?(生:这三个内角合起来是180度)

4、在三角形内三个内角的总度数又简称为三角形的内角和。(板书:和)

5、这个直角三角形的内角和是多少度?另一个呢?

6、你还记得180度是我们学过的是什么角吗?(平角)赶快在你的数学纸上画一个平角。

(师出示一个平角)问:平角是什么样的?

7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。

ⅱ、一般直角三角形内角和

1、老师还为你们准备了各种各样的直角三角形,快拿出来看看。

2、刚才的那两个直角三角形的内角和是180度,你们手中的直角三角形的内角和是多少度呢?老师还为你们准备了一些学具,你能充分地利用这些学具,想办法来研究直角三角形的内角和是多少度吗?下面我们以小组为单位来研究,注意小组同学要明确分工可以一个人填表,另外的人一起动手实验看一看哪一组想出研究方法最多。

(1)小组活动(2)汇报

哪个组愿意把你们的研究成果向大家展示?每个小组派代表发言。(在实物展台上演示)

三角形的种类

验证方法

验证结果

*“量一量”的方法:

板书:有一点误差的度数

*“剪一剪”的方法:

我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)(课件展示)

现在我们也用这种方法试一试,看能不能拼成平角?(小组实验)

你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?

还有其他方法吗?

*“折一折”的方法:

预设:①生:我是折的。师:怎样折的?你能给大家演示吗?

学生演示(课件:折的过程)

②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)

*推理:

你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)

这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)

3、小结

(1)通过我们刚才的研究,我们发现直角三角形的内角和都是多少度呀?(板书:内角和是180°)刚才我们在测量的.时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。

(2)在我们三角形的世界中,是只有直角三角形吗?还有什么?(板书:锐角三角形、钝角三角形)

(设计意图:引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。)

(二)、锐角三角形、钝角三角形的内角和

1、请你们任意画一个钝角三角形,一个锐角三角形

2、直角三角形的内角和是180度,锐角三角形、钝角三角形的内角和又是多少度呢?你能利用我们刚才学到的知识来研究你所画的三角形的内角和是多少度吗?快试试,可以同桌讨论。(学生操作,汇报,课件演示)我们是用什么方法来研究的?

3、学生模仿老师操作说理

4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。

师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?如果没有的话请你用自信、肯定的语气读一读(板书:三角形的内角和是180°)。

(设计意图:引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。)

三、巩固新知,拓展应用

我们就用三角形的这一特性来解决一些问题

1、两个三角形拼成大三角形

(1)每个三角形的内角和都是少度?

(2)(课件把两个三角形拼在一起)它的内角和是多少度?(这时学生答案又出现了180°和360°两种。)师:究竟谁对呢

2、一个三角形去掉一部分

(1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?

再剪去一个三角形呢?(课件演示)

你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。

(2)我再把这个三角形剪去一部分,它的内角和是多少度?(课件:剪成四边形)

你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?

(3)如果五边形,你还能求出他的度数吗?

(设计意图:充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。)

四、总结评价、延伸知识

通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?

师:先研究的是特殊直角三角形的内角和是180度,接着通过量、拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。

(设计意图:帮助学生梳理本节课的知识脉络。)

篇33:三角形内角和教学设计

课题

三角形的内角和

手记

教学目标

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点

重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程

资源

体验目标

“学”与“教”

创设问题情境

课件出示:两个三角板

遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?

生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?

生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?

生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建

模型

每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)

课件

学生自己剪的一个任意三角形

大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。

这一系列活动同时还潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

师:之前老师为每个同学准备了①-⑥六个三角形,下面请组长分发给每个三角形,拿到手后,先别着急,先想一想你准备用什么方法去验证三角形内角和?

学生动手操作验证

师:汇报时,请先说一说是几号三角形?然后说一说这个三角形是什么三角形?

学生汇报:

生1:③号三角形是直角三角形,内角和是180°。

生2:②号三角形是锐角三角形,内角和是180°。

生3:⑤号三角形是钝角三角形,内角和是180°。

生4:④号三角形是直角三角形,内角和是180°。

生5:①号三角形是钝角三角形,内角和是180°。

生6:⑥号三角形是锐角三角形,内角和是180°。

师:除了量的方法外,还有其他方法验证三角形内角和吗?

生1:分别剪下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生2:分别撕下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生3:把三角形的三个角折成平角,平角是180°,所以推理得出三角形内角和是180°。

这些方法都验证了:三角形的内角和是180°。

师:观察这些三角形的内角和是多少度?这些三角形的内角和都是180°,这是不是老师故意安排好的呢?

师:有没有人质疑,用什么方法验证?

生用自己剪的任意三角形再次验证三角形内角和是否180°。

生:得出内角和还是180°。

师:不管是老师提供的三角形,还是你们自己准备的三角形,通过我们的算一算、拼一拼、折一折,都得出了三角形的内角和是180°。

师:我们已经学习了三角形的分类,三角形可以分成锐角三角形、直角三角形、钝角三角形。这些三角形的内角和是180°,我们能把它们概括成一句话吗?

生:三角形的内角和是180°。

师:看来我们的猜想是正确的。

师:早在20xx多年前著名数学家欧几里得就已经得到这个结论,到了初中以后同学们还会用更加严密的方法证明三角形的内角和是180°。

解释

运用拓展

课件

正方形纸

让学生更深的对所学的新知加以巩固,从而促使学生综合运用知识,解决问题的能力。同时在练习中发展学生的观察、归纳、概括能力和初步的空间想象力。

1.∠1=40°,∠2=48°,求∠3有多少度?

2.算出下面三角形∠3的度数。

⑴∠1=42°,∠2=38°,∠3=?

⑵∠1=28°,∠2=62°,∠3=?

⑶∠1=80°,∠2=56°,∠3=?

师:你是怎样算的?这三个三角形各是什么三角形?

提问:在一个三角形中最多有几个钝角?

在一个三角形中最多有几个直角?

3.游戏:将准备的正方形纸对折成一个三角形?

师:这个三角形的内角和是多少度?再对折一次,现在内角和是多少度?如果继续折下去,越折越小,三角形的内角和会是多少度?

说明:三角形大小变了,内角和不变。

4.有两个完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

说明:三角形形状变了,内角和不变。

5.根据所学知识,你能想办法求出下面图形的内角和吗?

板书

设计

三角形内角和

①号 钝角三角形 内角和180°

②号 锐角三角形 内角和180°

三角形内角和是180°

③号 直角三角形 内角和180°

④号 直角三角形 内角和180°

⑤号 钝角三角形 内角和180°

⑥号 锐角三角形 内角和180°

学具教具准备

课件三角形纸片量角器正方形纸

篇34:三角形内角和优秀教学设计

一、教材内容分析

三角形的内角和是三角形的一个重要特征。本课时安排在三角形的特性和分类之后进行的,它是学生以后学习多边形的内角和的基础。学生在掌握知识方面:基本掌握三角形的分类,角的分类等有关知识;能力方面:学生已具备了初步的动手操作能力和主观探究能力以及合作学习的习惯。因此,教材特重视知识的探索宇发现,安排了一系列的实验操作活动。教材在呈现教学内容时,即重视知识的形成过程,又注意提供学生自主探究的空间,为教师组织教学提供了清晰的思路。学生通过量;剪;拼;算等活动,让学生探索.实验.发现.验证三角形内角和是180度。

二、教学目标(知识,技能,情感态度、价值观)

知识于技能:让学生通过亲自动手量.剪.拼等活动,发现三角形内角和是180度,并会应用这一知识解决生活中简单的实际问题。

过程与方法:让学生在动手获取知识的过程中,培养学生的创新意识和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”的数学思想

情感态度与价值观:通过学习让学生体验成功的喜悦,激发学生主动学习数学的兴趣。

三、学习者特征分析

学生已经认识了三角形,并掌握了三角形的分类,较熟悉平角等有关知识;具备了初步的动手操作能力和主动探究能力。因此概念的形成是通过量.算.拼等活动,让学生探索.实验.发现.讨论.推理.归纳出三角形的内角和是180度。

四、教学策略选择与设计

1.关注学生的学习过程,注意培养学生动手操作能力以及和作与交流的能力,培养应用和创新意识。

2.从学生已有的知识和生活经验出发,让学生通过操作.观察.思考.交流.推理.归等活动,培养学生的学习兴趣,体验数学的价值。

五、教学环境及资源准备

教具准备;多媒体课件.一副三角板。

学具准备:量角器.各种三角形.剪刀等。

篇35:三角形的内角和的教学设计

三角形的内角和

教学内容:四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。

教学目标:

1.使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。

2.使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。

3.使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。

教学重点:让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。

教学难点:探究和验证“三角形内角和等于180°”。

教学准备:学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。

教学过程:

一、创设情境,产生疑问

1.理解内角和含义。

2.故事激趣

提问:三兄弟围绕什么问题在争吵?你有什么看法?

二、自主学习,合作探究

1.提出猜想。

(1)计算三角板的内角和。

(2)提出猜想。

提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?

指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。

引导:需用更多的三角形验证。

2.进行验证。

(1)验证教师提供的三角形。

测量:任意三角形的内角和。

①小组合作:用量角器量出信封里不同三角形的内角和。 ②交流测量结果。

③提问:根据测量结果,你能得出什么结论?

拼一拼:把一个三角形的三个角拼在一起。

①思考:除了量,还可以用什么方法验证呢?

②同桌合作:尝试把三个内角拼成一个平角。

③反馈不同的拼法。

④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?

解释误差问题。

(2)验证学生自己画的三角形。

学生任意画一个三角形,用自己喜欢的方法去验证。

交流:自己画的三角形验证出来内角和是1800 吗?有谁验证

出来不是1800 的吗?

提问:你又能得到什么结论?还有怀疑吗?

3.得出结论。

指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。

说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。

解决争吵:学生用三角形内角和的知识劝解三兄弟。

三、巩固应用,深刻感悟

1.算一算:求三角形中未知角的度数。

2.拼一拼:用两块相同的三角尺拼成一个三角形。

思考:拼成的三角形内角和是多少?

3.画一画:(1)你能画出一个有两个锐角的三角形吗?

(2)你能画出一个有两个直角的三角形吗?

(3)你能画出一个有两个钝角的三角形吗?

四、全课总结,课后延伸

1.学生自主总结一节课的收获。

2.介绍帕斯卡。

3.用三角形拼成四边形、五边形、六边形??引发新的问题。

篇36:三角形的内角和的教学设计

《三角形内角和》教学设计

一、教材依据

苏教版四年级数学第八册第28~29页

二、教学方法及思路

数学学习的价值在于让学生亲身经历知识发生发展的过程。本节课力图带领学生进入这样一个学习过程:利用故事的形式,让学生产生疑问,三角形的内角和是不是180°?接着让学生通过小组合作的方法通过剪或折,得到三角形的三个内角都能凑成一个平角,得出三角形内角和是180°这一规律。通过课件的进一步演示,让学生对结论的形成过程有更系统更清晰的整理,较好的突破了这节课的重、难点部分。在练习设计方面,通过算一算,量一量,选一选,拼一拼,折一折,说一说等多种方式,提高学生解决简单的实际问题的能力。

三、教学目标

1.知识目标:让学生通过量、剪、拼、摆、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

2.能力目标:让学生在学习活动中进一步增强探索的意识,提高合作交流的'能力,获得成功的体验,树立学习的信心。

3.情感目标:让学生体会几何图形内在的结构美,并充分体会到学习数学的快乐。

四、教学重点:`

使学生理解并掌握三角形的内角和是180°。

五、教学难点

验证所有三角形的内角之和都是180°。

六、教学设备

量角器、正方形纸、剪刀、各类三角形(也包括等边、等腰)、实物投影、多媒体课件

七、教学过程

(一)创设情境,导入新课

1、师谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?

让学生对了解的有关三角形的知识畅所欲言。

2、师谈话:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!

教师放课件。

课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,(它们在争论谁的内角和大。)

3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。

(板书课题:三角形内角和)

设计意图:一方面借助电教媒体,利用儿童喜闻乐见的故事创设情境,激发学生学习兴趣,另一方面,通过故事中的认知冲突,来激发学生的求知欲。

(二)自主探究,发现规律

1、认识什么是三角形的内角和三角形的内角和。

谈话:我们通常所说的三角尺的角是三角尺的内角,你知道什么是三角形的内角和吗?

通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

2、探究三角形内角和的特点。

①让学生想一想、说一说怎样才能知道三角形的内角和?

学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行验证。)

②小组合作。

通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。

引导学生推测出三角形的内角和可能都是180°。

3、验证推测。

让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。

(小组合作验证,教师参与其中。)

4、全班交流,共同发现规律。

当学生汇报用折拼或剪拼的方法的时候,教师在电脑中根据学生的汇报,分别演示直角三角形、锐角三角形、钝角三角形的折拼和剪拼的过程。

在学生交流、教师课件演示的过程中,师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)

5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

[设计意图:先提出疑问,再通过学生的动手实践、自主探索与合作交流的方式,一方面调动了学生思维的积极性,另一方面,通过课件的演示,在学生的充分感知的基础上发现三角形的内角和是180°]

(三)巩固练习,拓展应用

根据发现的三角形的新知识来解决问题。

1、教学“试一试”

出示“试一试”:三角形中,∠1=75°,∠2=39°,∠3=( )?

学生试做,指名板演。学生可能有下面两种算法:

①∠3=180°—75°—39°=66°

②∠3=180°—(75°+39)°=66°

评议板演,教师让学生说说是怎样想的,再让学生用量角器量一量教科书中的∠3。提问:与算出的结果相同吗?

2、“想想做做”第1题

生独立完成,集体订正,并说说解题方法。

3、“想想做做”第2题

提问:为什么两个三角形拼成一个三角形后,内角和还是180度?

4、“想想做做”第3题

生动手折折看,填空。

提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?

5、“想想做做”第6题

生说说自己的想法。

[设计意图:当学生获得“三角形的内角和是180°”的知识信息后,让学生通过算一算、量一量、拼一拼和折一折,巩固学生对三角形的内角和的认识。]

引导学生说出:首先要看三个内角的和是不是180°,其次看每个内角的度数是否符合这类三角形的特征。

[设计意图:开放题的设计,给学生广阔的思维空间,学生综合运用已学知识解决问题。]

(五)课堂作业

完成“想想做做”第4题和第5题。

(六)课堂总结

问:这节课你学到了哪些数学知识?这些知识你是怎样获得的?你还有什么疑问?

[设计意图:通过交流式的回顾,引导学生对本课学习知识和学习方法进行总结。]

(七)板书设计

三角形内角和等于180°

①∠3=180°—75°—39°=66°

②∠3=180°—(75°+39)°=66°

八、教学反思:

本节课,我根据学生的学习起点和学习心理,设计了首先利用故事的形式,让学生看到三个三角形在争论“到底谁的内角度数大呢?”来吸引每个学生,让学生主动参与思考,产生疑问。在探索三角形内角和的过程中,我注重学生的动手实践、自主探索和合作交流的培养,让学生自己去画一画、量一量、拼一拼、折一折,并通过课件的演示,让学生在充分感知的基础上,发现了三角形的内角和是180°这一规律。学生的主动探索和合作交流的能力得到了提高,较好的突破了本课的重点和难点。

篇37:三角形的内角和的教学设计

三角形的内角和

总课时数:第15课时上课时间:2013年╳╳月╳╳日 教学内容:p.28.29

教学目标:

1.让学生通过观察、操作、比较、归纳,发现“三角形的内角和是180o”。

2.让学生学会根据“三角形的内角和是180 o”这一知识求三角形中一个未知角的度数。

3.激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

教学重点:探索三角形内角和是180°

教学难点:探索三角形内角和是180°

教学准备:三角板,量角器、点子图、自制的三种三角形纸片等。

教学过程:

一、交流展示

老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90o+60o+30o=180o,90o+45o+45o=180o

看了这2个算式你有什么猜想?

(三角形的三个角加起来等于180度)

二、自主探索

1.画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

老师注意巡视和指导。交流各自加得的结果,说说你的发现。

2.折、拼:学生用自己事先剪好的图形,折一折。

指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

继续用该方法折钝角三角形,得到同样的结果。

直角三角形的折法有不同吗?

通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

3.撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。 在撕之前要分别在三个角上标好角1.角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角——180度。

小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180o。

三、精讲点拔

三角形中,角1=75o,角2=39o,角3=()o

算一算,量一量,结果相同吗?

四、运用提升

1、算出下面每个三角形中未知角的度数。

在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80 o。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

2.一块三角尺的内角和是180 o,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

可先猜想:两个三角形拼在一起,会不会它的内角和变成180×2=360 o呢?为什么?

然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 o。

3.用一张正方形纸折一折,填一填。

4.说理:一个直角三角形中最多有几个直角?为什么?

一个钝角三角形中最多有几个直角?为什么?

五、达标作业

补充习题相关作业

板书设计

篇38:《三角形内角和》的教学设计

【设计理念】

新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。

【教材内容】新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。

【教材分析】

三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

【学情分析】

1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。

2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。

【教学目标】

1、通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

2、在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

3、在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

【教学重点】

探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

【教学难点】验证“三角形的内角和是180°”。

【教(学)具准备】

多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

【教学步骤】

一、复习旧知 引出课题

1、你已经知道有关三角形的哪些知识?

2、出示课题:三角形的内角和

设计意图:也自然导入新课。

二、提出问题 引发猜想

1、提出问题:看到这个课题,你有什么问题想问的?

预设:

(1)三角形的内角指的是哪些角?

(2)三角形的内角和是什么意思?

(3)三角形的内角一共是多少度?

2、引发猜想

猜一猜:三角形的内角和是多少度?你是怎么猜的?

设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。

三、操作验证 形成结论

1、交流验证方法:

(1)用什么方法证明三角形的内角和是180度呢?

预设: ①量算法 ②剪拼法 ③折拼法等

(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?

2、动手验证

3、全班汇报交流

4、小结:刚才通过大家的动手操作验证了三角形的内角和是180°度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。

5、方法拓展

推理验证:用直角三角形的内角和来证明其他三角形内角和是180°的方法。

6、形成结论:任意三角形的内角和是180°。

设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的`机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。

四、应用结论 解决问题

1、巩固新知:想一想,算一算。

2、解决问题:等腰三角形风筝的顶角是多少度?

3、辨析训练,完善结论。

五、课堂总结,归纳研究方法

今天这节课你学到了哪些知识?你是怎样得到这些知识的?

六、课后延伸:用今天所学的方法继续研究四边形的内角和。

七、板书设计:

三角形的内角和

猜测: 三角形的内角和是180°?

验证: 量 拼

结论: 任意三角形的内角和是180°

篇39:《三角形内角和》的教学设计

教学目标:

1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

3、经历三角形内角和的研究方法,感受数学研究方法。

教学重点:

1、探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:表格、课件。

学具准备:各种三角形、剪刀、量角器。

一、创设情境揭示课题。

1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。

生1:大三角形大(个子大)

生2:小三角形大(有钝角)

(教师不做判断,让学生带着问题进入新课)

2、什么是三角形的内角和?(板书:内角和)

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:

1、你认为谁说得对?你是怎么想的?

2、你有什么办法可以比较一下这两个三角形的内角和呢?

生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

生3:用折一折的办法把三个角折到一起看它们能不能组成平角

(二)探索与发现

活动一:量一量

(1)①了解活动要求:(屏幕显示)

A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

B、把测量结果记录在表格中,并计算三角形内角和。

C、讨论:从刚才的测量和计算结果中,你发现了什么?

(引导生回顾活动要求)

②小组合作。

③汇报交流。

你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

(引导学生发现每个三角形的三个内角和都在180°,左右。)

(2)提出猜想

刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

活动二:拼一拼,验证猜想

这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

(1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。

(2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

(3)分组汇报,讨论质疑

(4)课件演示,验证结果

活动三:折一折

师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。

(把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180°,)。

讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

提问:还有没有其它的方法?

3、回顾两种方法,归纳总结,得出结论。

(1)引导学生得出结论。

孩子们,三角形内角和到底等于多少度呢?”

学生答:“180°!”

(2)总结方法,齐读结论

我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

(3)解释测量误差

为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?

那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180°

(三)回顾问题:

现在你知道这两个三角形谁说得对了吗?(都不对!)

为什么?请大家一起,自信肯定的告诉我。

生:因为三角形内角和等于1800180°。(齐读)

三、巩固深化,加深理解。

1、试一试:数学书28页第3题

∠A=180°-90°-30°

2、练一练:数学书29页第一题(生独立解决)

∠A=180°-75°-28°

3、小法官:数学书29页第二题

四、回顾课堂,渗透数学方法。

1、总结:猜想—验证—归纳—应用的数学方法。

2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

3、课堂延伸活动:探索——多边形内角和

板书设计:

探索与发现(一)

三角形内角和等于180°

篇40:初中三角形内角和教学设计

【教学目标】

1、通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

2、在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

3、在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

【教学重点】

探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

【教学步骤】

一、复习旧知引出课题

1、你已经知道有关三角形的哪些知识?

2、出示课题:三角形的内角和

设计意图:也自然导入新课。

二、提出问题引发猜想

1、提出问题:看到这个课题,你有什么问题想问的?

2、引发猜想

猜一猜:三角形的内角和是多少度?你是怎么猜的?

设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。

三、操作验证形成结论

1、交流验证方法:

(1)用什么方法证明三角形的内角和是180度呢?

预设:①量算法②剪拼法③折拼法等

(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?

2、动手验证

3、全班汇报交流

4、小结:刚才通过大家的动手操作验证了三角形的内角和是180°度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。

5、方法拓展

推理验证:用直角三角形的内角和来证明其他三角形内角和是180°的方法。

6、形成结论:任意三角形的内角和是180°。

设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。

四、应用结论解决问题

1、巩固新知:想一想,算一算。

2、解决问题:等腰三角形风筝的顶角是多少度?

3、辨析训练,完善结论。

五、课堂总结,归纳研究方法

今天这节课你学到了哪些知识?你是怎样得到这些知识的?

六、课后延伸:用今天所学的方法继续研究四边形的内角和。

七、板书设计:

三角形的内角和

猜测:三角形的内角和是180°?

验证:量拼

结论:任意三角形的内角和是180°

篇41:初中三角形内角和教学设计

【教学目标】

1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】

探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

【教学难点】

对不同探究方法的指导和学生对规律的灵活应用。

【教具准备】

课件、表格、学生准备不同类型的三角形各一个,量角器。

【教学过程】

一、激趣引入。

1、猜谜语

师:同学们喜欢猜谜语吗?

生:喜欢。

师:那么,下面老师给大家出个谜语。请听谜面:

形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

生:三角形

2、介绍三角形按角的分类

师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类

师分别出示卡片贴于黑板。

3、激发学生探知心里

师:大家会不会画三角形啊?

生:会

师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!

生:试着画

师:画出来没有?

生:没有

师:画不出来了,是吗?

生:是

师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”

二、探究新知。

1、认识三角形的内角

看看这三个字,说说看,什么是三角形的内角?

生:就是三角形里面的角。

师:三角形有几个内角啊?

生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)

师:你知道什么是三角形“内角和”吗?

生:三角形里面的角加起来的度数。

2、研究特殊三角形的内角和

师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?

生:算一算:90°+60°+30°=180°90°+45°+45°=180°

师:180°也是我们学习过的什么角?

生:平角

师:从刚才两个三角形的内角和的计算中,你发现了什么?

3、研究一般三角形的内角和

师:猜一猜,其它三角形的内角和是多少度呢?

生:

4、操作、验证

师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

要求:

(1)每4人为一个小组。

(2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?

(3)验证的方法不只一种,同学们要多动动脑子。

师:好,开始活动!

师:巡视指导

师:好!请一组汇报测量结果。

生:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。

生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。

师:好!非常好!

师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)

生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。

师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)

现在老师问同学们,三角形的内角和是多少?

生:180度。

师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。

三、解决疑问

师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?

生:没有

师:那你能用这节课的知识解释一下为什么画不出来吗?

生:两个直角是180度,没有第三个角了。

师:如果想画出有两个角是钝角的三角形你能画出来吗?

生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。

师:学会了知识,我们就要懂得去运用。

篇42:初中三角形内角和教学设计

教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。

教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。

教学目标:

1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。

2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。

3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

教学重点:

理解并掌握三角形的内角和是180°。

教学难点:

验证所有三角形的内角之和都是180°。

教具准备:

多媒体课件、各种三角形等。

学具准备:

三角形、剪刀、量角器等。

教学过程:

一、出示课题,复习旧知

1、认识三角形的内角。

(1)复习三角形的概念。

(2)介绍三角形的“内角”。

2、理解三角形的内角“和”。

二、动手操作,探究新知

1、通过预习,认识结论,提出疑问

2、验证三角形的内角和

(1)用“量一量、算一算”的方法进行验证

①汇报测量结果

②产生疑问:为什么结果不统一?

③解决疑问:因为存在测量误差。

(2)用“剪一剪、拼一拼”的方法进行验证

①指导剪法。

①分别拼:锐角三角形、直角三角形、钝角三角形。

③验证得出:三角形的内角和是180°。

(3)用“折一折”的方法进行验证

①指导折法。

①分别折:锐角三角形、直角三角形、钝角三角形。

③再次验证得出:三角形的内角和是180°。

3、看书质疑

三、实践应用,解决问题:

1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

2、求出三角形各个角的度数。(图略)

3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是

70°,它的顶角是多少度?

4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)

5、数学游戏。

四、总结全课、延伸知识:

1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?

2、知识延伸:给学生介绍一种更科学的验证方法――转化。

【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。

板书设计:三角形的内角和是180°

方法:①量一量拼角

②拼一拼

③折一折

篇43:《三角形内角和》的教学设计

教学目标:

1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。

2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。

3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。

教学重点:

探索发现三角形内角和等于180并能应用。

教学难点:

三角形内角和是180的探索和验证。

教学过程:

一、创设情境,提出问题

师:大家喜欢猜谜语吗?

生:喜欢。

师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。

(打一几何图形))

生:三角形。

师:三角形中都有哪些学问?

生:三角形有三条边,三个角,具有稳定性。

生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。

生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。

生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。

生:三角形的内有和是180。

生:(一脸疑惑)

师:(板书:三角形的内角和是180),你有什么疑惑?生:什么是内角?

生:每个三角形的内角和都是180吗?

(根据学生的问题,在三角形的内角和是180后面加上一个?)

二、自主探索,实践验证

1、理解内角师:什么是内角?

生:我认为三角形的内角就是指三角形的三个角。

师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。

2、理解内角和。

师:那三角形的内角和又是指什么?

生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。

师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。

3、实践验证

师:每个三角形的内角和都是180吗?用什么方法来验证呢?

生:量一量每个角的度数,然后加起来看看是不是180。

师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)

师:谁愿意把你的劳动成果和大家分享一下?

生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。

师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。

生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。

师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。

生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。

师:你发现了什么?

生:有的三角形的内角和是180,而有的三角形的内角和却不是180。

师:看来三角形的内角和不一定是180。

生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。

生:都接近180就能说一定是180吗?

师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!

(学生在小组内进行探索验证。教师巡视,参与到学生的研究中)

师:请每个小组选择一个代言人,和大家分享一下你们的智慧。

生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。

师:你折的只是锐角三角形,只能证明锐角三角形的内角和是180,直角三角形,钝角三角形是不是也是这样的?

生:我们小组也有折的直角三角形,钝角三角形。

(其它的成员展示不同的三角形)

师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!

师:哪个小组和他们的方法不一样?

生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。

师:这个小组的方法简便,易操作,很好。

生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!

4、小结

师:刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出了无论是什么样的三角形的内角和都是1800,你还有什么疑问吗?

生:没有。

师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。

三、巩固应用,加深理解

1、说一说每个三角形的内角和是多少度

师:(出示一个大三角形)这个大三角形的内角和是多少度?

生:180

师:(出示一个小三角形)这个小三角形的内角和是多少度?

生:180

师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?

生:180

师:为什么每个三角形的内角和是1800,而合起来还是180呢?另外那180去哪儿了?

生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180

师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?

生:180

2、求下面各角的度数

师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?

(出)

生:三角形内角和是180,在第一个三角形中,用180-75-28,A=77

生:用180-90-35,C=55。

生:第二个三角形是直角三角形,B是直角,也可以直接用90-35=55。

生:第三个三角形中,用180-20-45,B=115。

3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?

生:等腰三角形的两个底角相等,所以用180-70-704、

师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。

在设计这座大桥时,如果设计师将斜拉的钢索与桥柱形成的夹角设计成了56,建筑师在造桥时怎样才能确定钢索与桥柱是否形成了这个角度?

生:用量角器量一量

师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?

生:桥面与桥柱形成一个直角,是90,斜拉的钢索与桥柱形成的夹角是56,那么用180-90-56=34,就是斜拉的钢索与桥面的夹角,所以只要让斜拉的钢索与桥面的夹角是34,那么斜拉的钢索与桥柱形成的夹角就是56

师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。

四、回顾总结,拓展延伸

师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?

生:我知道了三角形的内角和是180。

生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。

生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。

生:我可以用撕、拼、折等方法来验证三角形的内角和是180。

师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。

师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?

生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。

生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。

师:我们学习知识,必须知其然并知其所以然。

师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。

篇44:《三角形内角和》的教学设计

本节微课视频是苏教版数学教科书四年级下册第78~79页的教学内容。在教学之前,学生已经掌握了角的概念、角的分类和角的测量;认识了三角形,知道三角形是由三条线段首尾相接围成的图形,有三个顶点、三条边和三个角。这些已经构成学生进一步学习的认知基础。《三角形的内角和》是三角形的一个重要性质。学生在学习四年级上册“角的度量”时,通过测量三角尺三个角的度数,知道三角尺三个角加起来的和是180度,再加上课前的预习,大部分的学生已经能得出结论:三角形的内角和是180度,只不过他们不清楚其中的道理,只是机械性的记忆。因此,本节课的重点不是结论,而是验证结论的过程。教材组织学生对不同形状、不同大小的三角形的内角和进行探索,通过转化、推理、比较、操作和验证,总结概括出“所有三角形的内角和都是180度”的规律,从而进一步发展学生的空间观念,提高学生的自主学习能力和推理能力。

下面就具体谈谈微课的教学设计:

一、教学目标

1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。

2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的'联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。

3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学习数学的兴趣。

二、教学重点和难点

重点:让学生亲自验证并总结出三角形的内角和是180度的结论

难点:对不同验证方法的理解和掌握。

三、教学过程

(一)质疑――发现问题,提出问题

出示学生熟悉的一副三角尺,让学生说说每块三角尺中各个内角的度数。试着计算每块三角尺的三个内角的度数加起来的和是多少度?

交流:不同三角尺的内角和都是一样的吗?三角尺的内角和有什么特征?

引导学生得出三角尺的三个内角的度数和是180度。

提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)

你有什么办法验证这一结论呢?(动手操作,寻找答案)

方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)

方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。

启发:直角三角形的内角和是180度,这一结论让你联想到了什么?你能提出什么新的数学问题呢?

引导:从直角三角形的内角和联想到所有三角形的内角和,提出问题:所有三角形的内角和都是180度吗?

(二)探究――分析问题,解决问题

出示三个三角形:直角三角形、锐角三角形和钝角三角形。

引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。

提问:你有什么办法来验证这一猜想呢?

拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。

方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。

引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。

方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个平角,是180度。

方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个平角,是180度。

方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。

(三)归纳――获得结论

交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?

总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。

(四)拓展――巩固练习

1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?

2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?

篇45:三角形的内角和的教学设计

【教材分析】

《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】

经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1。知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

【学习目标】

知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

能力目标:培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

情感目标:让学生体会几何图形内在的结构美。

【教学过程】

一、情景激趣,质疑猜想。

播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。

钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”

师:想一想,什么是三角形的三个内角的和。

生:三角形的三个内角的度数和。

师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

学生进行猜想,自由发言。

(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)

二、自主探究,验证猜想

师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是180°,你能设法验证这个猜想吗?

生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。

生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。

生3:我把三角形的三个角撕下来,拼一拼是否180°。

生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。

……

师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!

学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

三、交流评价,归纳结论。

学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

师生共同归纳,得出结论:

三角形内角和等于180°

(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)

四、分层练习,巩固创新。

①课件出示:

师:这个三角形是什么三角形?知道几个内角的度数?

生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。

师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。

学生做完后反馈讲评时让学生说说自己的方法。

生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。

∠A=180°-30°-90°=60°。

生2:先用30°加上90°得120°再用180°减去120°也可得∠A=60°。

②学生完成完成P29的第一题。

引导学生按照前面的方法独立完成,教师巡视,集体订正。

③猜一猜三角形的另外两个角可能各是多少度。

同桌同学互相说一说。(答案不唯一)

④小组操作探究活动。

让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。

方法

四边形内角和

用量角器量出每个内角的度数,并相加。

把四边形四个角剪下来,拼在一起。

把四边形分为两个三角形。

填表后让学生想一想、互相说一说,四边形内角和是多少度?

篇46:三角形的内角和的教学设计

教学目标:

1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

3、经历三角形内角和的研究方法,感受数学研究方法。

教学重点:

1、探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:表格、课件。

学具准备:各种三角形、剪刀、量角器。

一、创设情境揭示课题。

1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。

生1:大三角形大(个子大)

生2:小三角形大(有钝角)

(教师不做判断,让学生带着问题进入新课)

2、什么是三角形的内角和?(板书:内角和)

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:

1、你认为谁说得对?你是怎么想的?

2、你有什么办法可以比较一下这两个三角形的内角和呢?

生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

生3:用折一折的办法把三个角折到一起看它们能不能组成平角

(二)探索与发现

活动一:量一量

(1)①了解活动要求:(屏幕显示)

A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

B、把测量结果记录在表格中,并计算三角形内角和。

C、讨论:从刚才的测量和计算结果中,你发现了什么?

(引导生回顾活动要求)

②小组合作。

③汇报交流。

你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

(引导学生发现每个三角形的三个内角和都在180°,左右。)

(2)提出猜想

刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

活动二:拼一拼,验证猜想

这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

(1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。

(2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

(3)分组汇报,讨论质疑

(4)课件演示,验证结果

活动三:折一折

师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。

讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

提问:还有没有其它的方法?

3、回顾两种方法,归纳总结,得出结论。

(1)引导学生得出结论。

孩子们,三角形内角和到底等于多少度呢?”

学生答:“180°!”

(2)总结方法,齐读结论

我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。

(3)解释测量误差

为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?

那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180°

(三)回顾问题:

现在你知道这两个三角形谁说得对了吗?(都不对!)

为什么?请大家一起,自信肯定的告诉我。

生:因为三角形内角和等于1800180°。(齐读)

三、巩固深化,加深理解。

1、试一试:数学书28页第3题

∠A=180°-90°-30°

2、练一练:数学书29页第一题(生独立解决)

∠A=180°-75°-28°

3、小法官:数学书29页第二题

四、回顾课堂,渗透数学方法。

1、总结:猜想―验证―归纳―应用的数学方法。

2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

3、课堂延伸活动:探索――多边形内角和

篇47:三角形的内角和的教学设计

教学内容:人教版小学数学第八册第85页例5及”做一做”

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、在探索中体验发现的乐趣,增强学好数学的信心。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点:

验证所有三角形的内角之和都是180°

教具准备:多媒体课件。

学具准备:量角器、正方形、剪刀、各类三角形。(包括直角三角形、锐角三角形、钝角三角形)

教学过程:

一、设疑引思

1、分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的度数。

2、每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数。

3、设问:老师为什么能很快”猜”出第三个角的度数呢?

二、探索交流,获取新知

1、量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论。

2、折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度,初步验证”三角形的内角和是180°”的结论。

3、拼一拼:学生先动手剪拼所准备的三角形,进一步验证得出”三角形的内角和是180°”的结论。

4、师利用课件演示将一个三角形的三个角拼成一个平角的过程。

5、验证:FLASH演示三种三角形割补过程

发现1:通过把直角三角形割补后,内角∠2,∠3组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于()度。

发现2:通过把钝角、锐角三角形割补后,三角组成了一个()角,而()角等于()度。所以锐角三角形和钝角三角形的内角和都是180度。

6、小结:刚才能过量一量折一折拼一拼,你发现了什么?

生说,师板书:三角形的内角和―――180°

三、应用练习,拓展提高

1、书例5后”做一做”

思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)

2、下面哪三个角会在同一个三角形中。

(1)30、60、45、90

(2)52、46、54、80

(3)61、38、44、98

3、走向生活:

(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?

(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)

四、作业:作业本

五、全课总结

总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?

板书设计:三角形的内角和

三角形的内角和―――180°

篇48:《三角形内角和》优秀教学设计

《三角形内角和》优秀教学设计

教材分析

《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》、《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握三角形的内角和是180°这一规律具有重要意义。

学情分析

学生在本课学习前已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。

教学目标

(一)知识与技能:掌握“三角形内角和定理”的证明及其简单应用,让学生探索发现三角形的内角和是180°。

(二)过程与方法:通过量算、撕拼、折拼等活动培养学生观察、操作、探究、归纳、概括、反思等能力和初步的空间想象力,感受数学的转化思想;发展学生的空间观念和初步的逻辑思维能力;能运用所学知识解决简单的问题,训练学生对所学知识的运用能力。

(三)情感态度与价值观:

1、渗透转化迁移思想,培养学生大胆质疑的`勇气和严谨科学的精神,及与他人合作交流的意识。

2、让学生切实感受到从实验中得到的现象,经过简单的推理证明以后可以成为我们的一般公理,初步感受从个别到一般的思维过程。

教学重点和难点

理解并熟练运用三角形的内角和是180°。

篇49:《三角形的内角和》教学设计

《三角形的内角和》教学设计

学情分析:

学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

教学目标:

1、知识与技能:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、过程与方法:通过量一量、剪一剪、拼一拼,培养学生的合作能力、动手实践能力,并运用新知识解决问题的能力。

3、情感态度:使学生体验数学学习成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

探索发现和验证三角形的内角和是180度。

教学难点:

对不同探究方法的指导和学生对规律的灵活应用。

教具准备:

教师准备:多媒体课件、不同类形大小不一的三角形若干个、记录表

学生准备:量角器、直尺、剪刀

教学过程:

一、激趣导入

多媒体展示三角形

出示谜语:形状似座山,稳定性能坚

三竿首尾连,学问不简单?????(打一图形名称)

(预设:三角形)

师:谁能介绍介绍三角形?

(生1:三角形有三条边、三个顶点、三个角。

生2:三角形按角分类,分为钝角三角形、锐角三角形、直角三角形。)

师:你喜欢哪种三角形?(钝角三角形、锐角三角形、直角三角形)

师:同学们会画三角形吗?请你在练习本上画一个你喜欢的三角形。

师:钝角、直角、锐角三角形三兄弟吵起来了?我们快去看一看。

师:今天我们就来研究一下三角形的内角和。

二、学习目标

1、通过动手操作,使学生理解并掌握三角形内角和是180度的结论。

2、能运用三角形的内角和是180度这一规律,求三角形中未知角的'度数。

3、培养动手动脑及分析推理能力。

三、自主学习(展示量角法)

1.理解三角形的内角、内角和

(1)板书展示三角形

师:要想知道什么是三角形的内角和,我们得先知道什么是三角形的内角?(三角形里面的三个角都是三角形的内角。)

师:你能过来指指吗?同意吗?内角有几个?

师:为了研究方便,我们把三角形的三个内角分别标上∠1、∠2、∠3。

师:你能像老师一样把你的三角形标上∠1、∠2、∠3吗?

(2)三角形的内角和

师:什么是三角形的内角和?

(三角形三个角的度数的和,就是三角形的内角和,即:∠1+∠2+∠3)

师:就是把∠1+∠2+∠3加起来。

师:根据我们以前的经验,我们怎么知道∠1、∠2、∠3的度数呢?(预设:用量角器量)

师:请同学们拿出量角器,量一量你画的三角形的三个内角,并算出他们的和。(4分钟)

学生测量(1分40)汇报结果(5人)。

教师填写测量汇报单。

师:观察汇报的结果,你有什么发现?(所有三角形内角和度数不一样、三角形内角和都在180度左右)

四、合作探究

师:这是同学们亲自测量发现的,没有得到统一的结果,这个办法不能使人信服,有没有别的方法验证?老师给每个小组都提供了很多个三角形,现在请你们以小组为单位,拿出三角形来研究研究三角形的内角和到底是多少度。?(8分钟)(剪拼法)

1、操作验证探索三角形内角和的规律(6分钟)

(1)操作验证:小组合作

拿出装有学具的信封[信封里面有老师为学生事先准备的各种类型的三角形若干个(小组之间的三角形大小都不同)];拿出自备的直尺?剪刀

(老师要给学生充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

2、学生汇报

(1)转化法:

生:两个同样的直角三角形可以拼成一个长方形,长方形每个直角都是90度,内角和就是360度,所以三角形的内角和就是360度的一半180度。

师:他们用长方形的内角和来研究今天所学的知识,得到三角形的内角和是180度。

(2)折拼法

生:把三角形三个内角分别向下边折叠,拼成了一个平角,平角是180度,所以三角形的内角和是180度。

师:他们是用折拼法验证三角形的内角和是180度(动手能力真强)

(3)剪拼法

生:把三角形三个内角撕下来,拼成一个平角,平角是180,所以三角形的内角和是180度。(师:提问怎样能很快的找到三个角?把他们做上标记。)

标记上之后再拼一拼,可见标记的方法很科学。(20分钟)

3、教师演示

师:我们再来感受一下怎么验证三角形的内角和的?

师:这是什么三角形?把他折一折。

师:这是什么三角形?我们也可以把他折一折。你有什么发现?(折完以后都有一个平角,平角是180度,所以三角形的内角和是180度)

师分别通过剪拼法验证直角三角形、钝角三角形、锐角三角形内角和。

师:注意观察。

师:演示完毕有什么发现?(预设这些三角形剪接后都拼成了平角)平角是180度,所以三角形的内角和是180度。

师:刚刚我们研究了什么三角形。他们的内角和都是180度,那我们研究的这些三角形能不能代表所有的三角形,能。(因为三角形按角分类只能分成这三种。)(22分钟)

4、演示任意一个三角形的内角和都是180度。

出示一些三角形,让学生指出内角和。

师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。)(板书三角形的内角和是180度。)

师:那我们再看看刚刚汇报的结果。为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)

师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。现在确定这个结论了吗?(25分钟)

师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。早在300多年前就有一位法国著名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°

师:你们能用今天的发现做一些练习吗?

五、测评反馈

1、判断。

(1)直角三角形的两个锐角的和是90°。

(2)一个等腰三角形的底角可能是钝角。

(3)三角形的内角和都是180°,与三角形的大小无关。

4、剪一剪。

把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?

六、课后作业

69页第1题、第3题。

七、板书设计

篇50:《三角形内角和》的教学设计

教学内容:

北师版小学数学四年级下册《探索与发现(一)―三角形内角和》

教材分析:

《三角形内角和》是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形的特点的基础上进一步探究三角形有关性质中的三个内角和的性质,是“空间与图形”领域的重要内容之一。教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的。活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

学情分析:

本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识,这为感受、理解、抽象“三角形的内角和”的性质,打下了坚实的基础。同时,通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。能在小组长带领下,围绕数学问题开展初步的'讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,具备了初步的数学交流能力。

教学目标:

1、让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现“三角形内角和等于1800,”,并能应用规律解决一些实际问题。

2、在探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。

3、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

教学重点:

让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现三角形内角和等于1800,,并能应用规律解决一些实际问题。

教学难点:

掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:

表格、课件。

学具准备:

各种三角形、剪刀、量角器。

一、创设情境 揭示课题。

1、复习

提问:前面我们已经学习了三角形的一些知识,谁能介绍一下呢?

生回忆三角形的特征,三角形分类,三角形具有稳定性等内容。

2、引入

三角形具有稳定形,三角形家族是一个团结的家族,但今天家族内部却发生了激励的争论。

播放课件,提问:它们在争论什么?

什么是三角形的内角和?(板书:内角和)

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:

1、你认为谁说得对?你是怎么想的?

2、你有什么办法可以比较一下这两个三角形的内角和呢?

学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

(二)探索与发现

1、初步探索,提出猜想。

(1)量一量

①了解活动要求:(屏幕显示)

A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

B、把测量结果记录在表格中,并计算三角形内角和。

C、讨论:从刚才的测量和计算结果中,你发现了什么?

(引导生回顾活动要求)

②、小组合作。

③、汇报交流。

你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

(引导学生发现每个三角形的三个内角和都在1800,左右。)

(2)提出猜想

刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

2、动手操作,验证猜想

这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

引导:1800,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

(1)小组合作,讨论验证方法。

(2)分组汇报,讨论质疑

学生可能会出现的方法:

A、撕拼的方法

把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是1800,。

讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

B、折一折的方法

把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于1800。

讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

C提问:还有没有其它的方法?

3、回顾两种方法,归纳总结,得出结论。

(1)课件演示:两种方法的展示。

(2)引导学生得出结论。

孩子们,三角形内角和到底等于多少度呢?”

学生一定会高兴地喊:“1800!

(3)总结方法,齐读结论

我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

(4)解释测量误差

为什么我们刚才通过测量,计算出来的三角形内角和不是1800,呢?

那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于1800

(三)回顾问题:

现在你知道这两个三角形谁说得对了吗?(都不对!)

为什么?请大家一起,自信肯定的告诉我。

生:因为三角形内角和等于1800,。(齐读)

三、巩固深化,加深理解。

1、试一试:数学书28页第3题

∠A=180°― 90°―30°

2、练一练:数学书29页第一题(生独立解决)

∠A=180°― 75°― 28°

3、小法官:数学书29页第二题

篇51:初中三角形内角和教学设计

教材分析:

教材先让学生动手操作,通过实际度量三个内角的内角和,计算它们的和。由于测量产生误差不容易作出正确结论,再引导学生用实验的方法探索规律。为使所得的结论具有普遍性,使学生信服,教材分别安排对直角三角形、锐角三角形和钝角三角形分别进行实验,再概括出一般结论。接着说明这一结论的应用。

设计理念:

本节课的教学设计让学生经历了量,撕,折等一系列活动,从而得出“三角形的内角和是180度”这一结论。学生通过操作和思考,真正经历有效的探究活动,让学生产生探究的需要;给学生空间,让他们自主探究,让学生充分经历提出猜想,进行实验验证的学习过程。在这一过程中,学生从自己已有的经验出发,积极的进行操作,测量,计算,并对自己的结论进行思考,分析,认真倾听其他同学的操作结果和想法,逐步形成了结论,为今后的学习打下了坚实的基础。

教学目标:

知识与技能:

在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。

过程与方法:

通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。

情感、态度与价值观:

在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

教学重点:让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程;知道三角形的内角和是180度并且能应用。

教学难点:三角形内角和是180度的探索和验证过程。

教学准备:多媒体课件、量角器、剪刀、各类三角形。

教学过程:

一、创设情境,激发兴趣

图形王国的国王有两名位大将一位叫“大三角形”,一位叫“小三角形”,有一天他们为一点儿小事吵了起来,大三角形吼道:“小家伙整天和我吵,你说我什么不比你大?”。小三角形不服气地说:“你的内角和就不比我的大”。大三角形理直气壮地说:“我的内角和肯定比你大。”两人争执不休,这时国王回来了:听了他们的诉说,有点糊涂的说“什么是三角形的内角,什么是三角形的内角和?你们的内角和哪个大呢?(板书:内角、内角和)”同学们:你们知道什么是三角形的内角,什么是内角和吗?

设计意图:这样设计主要是一则童话故事引入,利用学生生活经验,寻找学生最易接受问题的突破点,避免纯数学问题的枯燥,调动学生的视觉,激发学生的学习兴趣,提高学生学习主动参与的积极性。

二、探究新知

(一)动手操作探索解法:

每个学生画出一个三角形,并将它的内角剪下,分小组做拼角实验。通过小组合作交流,讨论有几种拼合方法?

开展小组竞赛(看哪个小组发现多?说理清楚。),各小组派代表展示拼图,并说出理由。

学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。

归纳:可以搬一个角用“两直线平行,同旁内角互补”来说理,也可以搬两个角、三个角用“平角定义”说明。引导学生合理添加辅助线(学生讨论,教师点评),为书写证明过程做好铺垫。

设计意图:让学生看动手拼,使学生直觉感知三角形角的变化与内角和的关系,让学生产生需要,主动去探索,主动去解决问题,主动去证明,充分调动学生,让他们通过观察思考操作验证归纳的过程,主动获取知识,培养个人能力。让学生把自己的证明过程和课件展示的过程对照,这样可以规范学生的证明步骤过程,有利于学生养成良好的`思维习惯。

(二)、探索解法

指导学生写出已知、求证、证明过程(抽两人板演,教师点评,规范证明格式)。

教师应指出辅助线通常画为虚线,并在证明前交代说明。添加辅助线不是盲目的,而是证明需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。

已知:如图,△ABC

求证:∠A+∠B+∠C=180°

证明:作BC的延长线CD,过点C作射线CE∥BA.

∵CE∥BA

∴∠B=∠ECD(两直线平行,同位角相等)

∠A=∠ACE(两直线平行,内错角相等)

∵∠BCA+∠ACE+∠ECD=180°

∴∠A+∠B+∠ACB=180°(等量代换)

(三)议一议、开阔思野:

‘搬三个角’的特点:把角‘搬’到一起,让顶点重合、两条边形成一条直线,以便利用平角定义。

在证明三角形内角和定理时,可以把三个角集中到三角形的某一个顶点吗?引导学生叙述证明过程。

已知:如图,△ABC

求证:∠A+∠B+∠C=180°

证明:过A点作DE∥BC

∵DE∥BC

∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)

∵∠DAB+∠BAC+∠EAC=180°

∴∠BAC+∠B+∠C=180°(等量代换)

那么是否可以把三个角集中到三角形的一边上呢?集中在内部任意一点上呢?外部呢?引导学生开阔思维,大胆探索证明方法。

让学生讲解自己的思维过程和解法。

设计意图:教师要求学生用自己的方法进行验证,把知识的学习与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。学生不仅验证了自己的猜想,而且也充分第表明了给片面追求过程或者片面追求结果的教学行为以正确的引领,过程与结果是相互依赖,相互支持的整体。

三、巩固新知,拓展应用

例:如图C岛在A岛的北偏东50 °方向,B岛在A岛的北偏东80 °方向,C岛在B岛的北偏西40 °方向,从C岛看A,B两岛的视角∠ ACB是多少度?

设计问题:

1.A、B、C三点是否在同一直线上?

它们能否形成三角形?

2.确定东西南北方向,再者如何理解C岛在A岛的北偏东50 °, C岛在B岛的北偏西40 °, B岛在A岛的北偏东80 °?

3.由已知条件能推算出 ∠ CAB吗?由AD∥BE,图中的同位角、内错角或同旁内角有什么特点?能否利用这些条件推算出∠ ABC呢?

解: ∠ CAB= ∠ BAD- ∠ CAD=80 °-50 °

由AD ∥ BE,可得∠ BAD+ ∠ ABE=180°.

所以∠ ABE=180°- ∠ BAD=180°-80°=100°

∠ABC= ∠ ABE- ∠ EBC=100°-40°=60°

在ABC中,

∠ ACB=180°- ∠ ABC- ∠ CAB=180°-60°-30°=90°.

设计意图:“解决问题”,按学生的认知水平,是在感知、理解、掌握知识后,认知水平得已体现的最高层次。难易程度拾级而上,为学生把知识转化为能力起到了积极的促进作用。

四、课外延伸、思维拓展

名称 三角形 四边形 五边形 六边形

有几个三角形 1

内角和 180°

如果要求10边形的内角和,你会求吗?你有什么发现?

设计意图:三角形的内角和是180度的验证,使得学生的发现得到肯定,提高了学生的学习兴趣。由探索三角形的内角和拓展到探索多边形的内角和,又延续了学生的兴趣。整节课都在不断培养学生的学习兴趣。

五、小结:

通过今天的学习,你有什么样的收获? 这节课同学们的学习热情很高,收获不少。但数学的奥妙是无穷的。还等着你们在以后的学习中去发现、去探索。

六、作业布置:

课本241页数学理解1、2、3

七、教学反思

在教学中采用小组讨论、小组竞赛、板演等形式,充分调动学生的主动性、积极性。特别是由拼图得出“三角形内角和是180°”的结论的过程中,教师鼓励学生尝试用多种方法来证明这个结论,开展小组竞赛,让学生积极思考,大胆发言,营造生动有趣、活泼和谐的课堂气氛。

篇52:《三角形内角和》的教学设计

【教学内容】

《人教版九年义务教育教科书 数学》四年级下册《三角形的内角和》

【教学目标】

1、使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。

2、让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180 。

3、培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

【教学重点】

使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。

【教学难点】

通过多种方法验证三角形的内角和是180 。

【教学准备】

课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

【教学过程】

一、激趣导入,提炼学习方法

1、课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

2、继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3、选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

4、导入新课。

图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)

二、动手操作,探索交流新知

1.分组活动,探索新知

根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

量一量组同学发给以下几种学具:

折一折组同学发给上面的三角形一组。

拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

2.多方互动,交流新知

师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

(1)首先要求学生说一说你们小组是怎样进行探究的。

(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)

(3)请学生说说通过探究活动你们组得出的结论是什么。

师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

引导这一组从探究的过程和结论与同学、老师交流。

师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

同样引导这一组从探究的过程和结论与同学、老师交流。

3.思想碰撞,夯实新知

师:三个徒弟你们能说说谁的方法最好吗?

学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。

师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180 。

四、走进生活,提升运用能力

1.出示课前那架柁标出它的顶角是120 ,求它的一个底角是多少度?

2.给你三根木条,能做出一个有两个直角的三角形吗?

五、总结

师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?

六、拓展新知,课外延伸

师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

大屏幕出示:

能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

篇53:《三角形内角和》的教学设计

设计思路

本节课我先引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再引导学生通过折角的方法也发现这个结论,由此获得三角形的内角和是180°的结论。概念的形成没有直接给出结论,而是通过量、算、拼、折等活动,让学生探索、实验、发现、推理归纳出三角形的内角和是180°。

最后让学生运用结论解决实际问题,练习的安排上,注意练习层次性和趣味性,还设计了开放性的练习,由一个同学出题,其它同学回答。先给出三角形两个内角的度数,说出另外一个内角,有唯一的答案。给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中拓展学生思维。

教学目标

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备

教具:多媒体课件、用彩色卡纸剪的相同的两个直角三角形、一个钝角三角形、一个锐角三角形。

学具:三角形

教学过程

一、引入

(一)认识三角形的内角及三角形的内角和

师:我们已经学习了三角形的分类,谁能说说老师手上的是什么三角形?

师:今天我们来学习新的知识《三角形内角和》,谁能说说哪些角是三角形的内角?(让学生边说边指出来)

师:那三角形的内角和又是什么意思?(把三角形三个内角的度数合起来就叫三角形的内角和。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:……

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究三角形内角和

(一)猜一猜。

师:猜一猜三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

(二)操作、验证三角形内角和是180°。

1、量一量三角形的内角

动手量一量自己手中的三角形的内角度数。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?

学生汇报结果。

师:请汇报自己测量的结果。

生1:180°。

生2:175°。

生3:182°。

……

2、拼一拼三角形的内角

学生操作

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?(学生操作)

生:把它们剪下来放在一起。

师:很好。

汇报验证结果。

师:通过拼合我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。

生3:钝角三角形的内角和还是180°。

课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的结论?

生:三角形的内角和是180°。

(教师板书:三角形的内角和是180°学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

3、折一折三角形的内角

师:除了量、拼的方法,还有没有别的方法可以验证三角形的内角和是180°。

如果学生说不出来,教师便提示或示范。

学生操作

4、小结:三角形的内角和是180°。

三、解决疑问。

师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。

师:在一个三角形中,有没有可能有两个钝角呢?

生:不可能。

师:为什么?

生:因为两个锐角和已经超过了180°。

师:那有没有可能有两个锐角呢?

生:有,在一个三角形中最少有两个内角是锐角。

四、应用三角形的内角和解决问题。

1、下面说法是否正确。

钝角三角形的内角和一定大于锐角三角形的内角和。()

在直角三角形中,两个锐角的和等于90度。()

在钝角三角形中两个锐角的和大于90度。()

④一个三角形中不可能有两个钝角。()

⑤三角形中有一个锐角是60度,那么这个三角形一定是个锐角三角形。()

2、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

3、游戏巩固。

由一个同学出题,其它同学回答。

(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。

(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

4、根据所学的知识算出四边形、正五边形、正六边形的内角和。

五、全课总结。

今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

篇54:三角形内角和 教案教学设计

“三角形内角和”教学设计

教学内容

义务教育课程标准试验教科书《数学》(人教版) 四年级下册第85页。

设计思路

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

教学目标

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3. 使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教材分析

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备

多媒体课件、学具。

教学过程

一、激趣引入

(一)认识三角形内角

师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……

师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:只能画长方形。

师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

生:想。

师:那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究新知

(一)研究特殊三角形的内角和

师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

师:也就是这个三角形各角的度数。它们的和怎样?

生:是180°。

师:你是怎样知道的?

生:90°+60°+30°=180°。

师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

生:90°+45°+45°=180°。

师:从刚才两个三角形内角和的计算中,你发现什么?

生1:这两个三角形的内角和都是180°。

生2:这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1.猜一猜。

师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

2.操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

(2)小组汇报结果。

师:请各小组汇报探究结果。

生1:180°。

生2:175°。

生3:182°。

……

(三)继续探究

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?

生:把它们剪下来放在一起。

1.用拼合的方法验证。

师:很好,请用不同的三角形来验证。

师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。

2.汇报验证结果。

师:先验证锐角三角形,我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。

生3:钝角三角形的内角和还是180°。

3.课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的结论?

生:三角形的内角和是180°。

(教师板书:三角形的内角和是180°学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

三、解决疑问。

师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。

师:在一个三角形中,有没有可能有两个钝角呢?

生:不可能。

师:为什么?

生:因为两个锐角和已经超过了180°。

师:那有没有可能有两个锐角呢?

生:有,在一个三角形中最少有两个内角是锐角。

四、应用三角形的内角和解决问题。

1. 看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

2. 按要求计算。(数学信息较为隐藏和生活中的实际问题)

3.游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

五、全课总结。

今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

教学反思

这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。

在学习活动的过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。但还受课本资源的限制,不能大胆突破教材,充分利用生活资源。例如:可以出示一块被打烂了的三角形玻璃板(如图: ),向学生提出挑战性的问题:老师今天不小心把这块三角形的玻璃板打烂了,要重新买与原来同样大的一块,可老师不知道尺寸,怎么办呢?谁能帮老师解决这个问题呢?让学生利用学过的知识解决生活中常出现的问题,更能使学生体会到数学不仅来源于生活,学习数学的目的更是为了解决生活中的问题,体会到学习数学的重要意义。

篇55:《三角形内角和》的教学设计

教学目标:

1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点:

通过小组内量一量、折一折、撕一撕等活动,验证“三角形的内角和是180°。”

教师准备:

4组学具、课件

学生准备:

量角器、练习本

教学过程:

一、兴趣导入,揭示课题

1、导入:“同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?”

(生出示三角形并汇报各类三角形及特点)

2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。“咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?”“哦,它们为了三个内角和的大小而吵起来。”(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

3、我们来帮帮它们好吗?

4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。

你能标出三角形的三个角吗?(生快速标好)

数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。这节课我们就来研究一下“三角形的内角和”(课件片头1)

“同学们,用什么方法能知道三角形的内角和?”

二、猜想验证,探究规律(动手操作,探究新知)

1.量角求和法证明:

先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人量,一人记录,一人计算,看哪一小组完成的好?

(1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。(观察哪组配合好)。

(2)指名汇报各组度量和计算内角和的结果。

(3)观察:从大家量、算的结果中,你发现什么?

归纳:大家算出的三角形内角和都等于或接近180°。

(5)思考、讨论:

通过测量计算,我们发现三角形的内角和不一定等于180度,因为是测量所以能有误差,那么还有更好的方法能验证呢?

大家讨论讨论。

现在各小组就行动起来吧,看哪些小组的方法巧妙。看看能得出什么结论?

看同学们拼得这样开心,老师也想拼拼,行吗?演示课件。

看老师最终把三个角拼成了一个什么角?平角。是多少角?

“180°是一个什么角?想一想,怎样可以把三角形的三个内角拼在一起?如果拼成一个180度的平角就可以验证这个结论,对吗?”(课件3)

现在,我们可验证三角形的内角和是(180度)?

2、那么对任意三角形都是这个结论?请看大屏幕。

演示锐角三角形折角。(三个顶点重合后是一个平角,折好后是一个长方形。)

你们想不想去试一试。

1、小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、有可能出现折不到一起的情况,可演示以帮助学生)

2、“你通过哪种三角形验证(钝角、锐角、直角逐一汇报)”,生边出示三角形边汇报。(如有实物投影,直接在实物投影上展示最好,也可用大三角形示范,可随机改变顺序)

a、验证直角三角形的内角和

折法1中三个角拼在一起组成了一个什么角?我们可以得出什么结论?

引导生归纳出:直角三角形的内角和是180°

折法2我们还可以得出什么结论?

引导生归纳出:直角三角形中两个锐角的和是90°。

(即:不必三个角都折,锐角向直角方向折,两个锐角拼成直角与直角重合即可)

b、验证锐角、钝角三角形的内角和。

归纳:锐角、钝角三角形的内角和也是180°。

放手发动学生独立完成,逐一种类汇报师给予鼓励

三、总结规律

刚才,我们将直角三角形、锐角三角形、钝角三角形的三个内角量、剪、撕,能不能给三角形内角下一个结论呢?(生:三角形的内角和是180°)对!不论是哪种三角形,不论大小!我们可以得出一个怎样的结论?

(三角形的内角和是180°。)

(教师板书:三角形的内角和是180°学生齐读一遍。)

为什么用测量计算的方法不能得到统一的结果呢?

(量的不准。有的量角器有误差。)

老师的大三角形内角和大小三角形内角和大呀?(一样大)首尾呼应

四、应用新知,知识升华。

(让学生体验成功的喜悦)

现在,我们已经知道了三角形的内角和是180°,它又能帮助我们解决那些问题呢?

(课件5……)

在一个三角形中,有没有可能有两个钝角呢?

(不可能。)

追问:为什么?

(因为两个锐角和已经超过了180°。)

有两个直角的一个三角形

(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

问:那有没有可能有两个锐角呢?

(有,在一个三角形中最少有两个内角是锐角。)

1、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

2、做一做:

在一个三角形中,∠1=140度,∠3=35度,求∠2的度数、

3、27页第3题(数学信息较为隐藏和生活中的实际问题)

4.思考题、

五、总结

今天,我们在研究三角形的内角和时经历了猜想、验证、得出结论的过程,并且运用这一结论解决了一些问题。人们在进行科学研究中,常常都要经历这样的过程,同时,它也是一种科学的研究方法。

板书设计:

三角形内角和

量一量拼一拼折一折

三角形内角和是180°

篇56:四年级《三角形内角和》教学设计

教学目标:

1、通过“算一算,拼一拼,折一折”等操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:

探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:

对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:

课件、学生准备不同类型的三角形各一个,量角器。

教学过程:

一、创设情景,引出问题

1、课件出示三角形的争吵画面

锐角三角形:我的内角和度数最大。

直角三角形:不对,是我们直角三角形的内角和最大。

钝角三角形:你们别吵了,还是钝角三角形的内角和最大。

师:此时,你想对它们说点什么呢?

2、引出课题。

师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)

二、探究新知

1、三角形的内角、内角和

(1)什么是三角形内角(课件)

三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和(课件)

师:内角和指的是什么?

生:三角形的三个内角的度数的和,就是三角形的内角和。

2、看一看,算一算。

师:算一算两个三角尺的内角和是多少度?(课件)

学生计算

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

(预设)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

3、操作验证:小组合作。

选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

4、学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?

师:有没有别的方法验证。

(2)剪拼

a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

(3)折拼

师:有没有别的验证方法?

师:我在电脑里收索到拼和折的方法,请同学们看一看他是怎么拼,怎么折的(课件演示)。

(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)

师:此时,你想对争论的三个三角形说些什么呢?

5、小结。

三角形的内角和是180度。

三、解决相关问题

1、在能组成三角形的三个角后面画“√”(课件)

2、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。(课件)

3、一个等腰三角形的风筝,它的一个底角是70°,他的顶角是多少度?(课件)

四、练习巩固

1、看图,求三角形中未知角的度数。(课件)

2、求三角形各个角的度数。(课件)

五、总结。

师:这节课你有什么收获?

六、板书设计:

三角形的内角和是180°

篇57:四年级《三角形内角和》教学设计

教学目标:

1、通过测量,撕拼,折叠等方法。探索和发现三角形三个内角和的度数等于180°。

2、引导学生动手实验,经历知识的'生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。

3、能运用三角形内角和知识解决一些简单的问题。

教学重点:

探索和发现“三角形内角和是180°”。

教学难点:

验证“三角形内角和是180°,以及对这一知识的灵活运用。”

教具准备:

三角形,多媒体课中。

教学过程设计:

一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?

二、探究新知:

(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。

你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°

(二)、拼一拼

引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?

引导学生得出:三角形内角和等于180°

(三)折一折

引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。

回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。

三、巩固拓展

1、填一填

①直角形三角形的两个锐角和是()度。

②直角三角形的一个锐角是45°,另一个锐角是()度。

③钝角三角形的两上内角分别是20°,60°;则第三个角是()

2、火眼金晴

①钝角三角形的两个钝角和大于90°()。

②直角三角形的两个锐角之和正好等于90°()。

③淘气画了一个三个角分别是50°,70°,50°的三角形()

④两个锐角是60°的三角形是等边三角形()

⑤长方形的内角和等于360°()。

3、猜一猜:四边形的内角和是多少度?

五边形的内角和是多少度?

四、小结,今天学习了什么?你有什么收获?

篇58:四年级《三角形内角和》教学设计

知识与技能

1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。

2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。

情感态度与价值观

3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。

教学重点:

1、探索和发现三角形三个内角和的度数和等于180o。

2、已知三角形的两个角的度数,会求出第三个角的度数。

教学难点:

已知三角形的两个角的度数,会求出第三个角的度数。

方法与过程

教法:主动探究法、实验操作法。

学法:小组合作交流法

教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。

教学课时:1课时

教学过程

一、预习检查

说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度? 组内交流订正。

二、情景导入呈现目标

故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。

三、探究新知

自主学习

1、活动一、比一比2、活动二、量一量

(1)什么是内角?

(2)如何得到一个三角形的内角和?

(3)小组活动,每组同学分别画出大小,形状不同的若干个三角形。分别量出三个内角的度数,并求出它们的和。

(4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。

3、说一说,做一做。

(1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。

(2)把三个角折叠在一起,,三个角在一条直线上。从而得到三角形三个内角和等于()度。

四、当堂训练(小黑板出示内容)

1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。

2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形。

3、三角形具有()性。

4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。

5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。

6、交流学案第三题。 先独立做,最后组内交流。

五、点拨升华

任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。

六、课堂总结

通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。

七、拓展提高

妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少? 先独立做,最后组内交流。

板书设计:

三角形的内角和

测量三个角的度数求和:结论:

教学反思:三角形内角和等于180°,对于大多数同学来说并不是新知识。因为在此之前学生已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一结论,也不是怎样运用它去解结问题。而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。

当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。

word该篇DOC格式三角形内角和教学设计(合集58篇)范文,共有118767个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
三角形内角和教学设计(合集58篇)下载
三角形内角和教学设计(合集58篇).doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无