这里能搜索到更多你想要的范文→
当前位置:好范文网 > 教学资源 > 教学设计 >

最新人教版五年级约分教学设计(精选14篇)

发布时间:2022-08-26 15:47:34 审核编辑:本站小编下载该Word文档收藏本文

好范文网小编为你精心整理了14篇《最新人教版五年级约分教学设计》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在好范文网搜索到更多与《最新人教版五年级约分教学设计》相关的范文。

篇一:新人教版约分教学设计

【教学内容】

人教版五年级数学下册第四单元例3

【教材简析】

《约分》是人教版数学第十册第四单元第四部分的内容,约分是分数基本性质的直接应用。新课标指出:义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,为学生的全面发展创造条件。要尊重学生身心发展特点和教育规律,转变教育观念,积极实行启发式和讨论式教学;激发学生独立思考和创新意识,让学生既学会知识,又学会学习,使学生生动活泼积极主动地发展。

【教学目标】

1、使学生理解约分和最简分数的意义,掌握约分的方法,能够正确地进行约分。

2、培养学生综合运用已有知识解决问题的能力。

3、渗透恒等变换思想。

【教学重点】

掌握约分的方法。

【教学难点】

很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。

【教学用具】

多媒体课件、分数卡片

【教学过程】

一、情境导入,复习巩固,激发兴趣。

1、口算:3.8×2 = 12.5×0.8= 1.8÷9 =

5.4÷0.6 = 4-0.7 = 8.2+2=

2、【设计意图:孩子们对游泳有兴趣,以谈话导入,引发大家的学习兴趣,紧接着回顾求公约数和分数的基本性质,明确又简单,为理解最简分数和掌握约分的方法作好准备。】

二、理解最简分数及约分的意义

【设计意图:在提出了学生变分数的小组合作的要求后,老师参与其中,予以适当的点拨,让学生明确活动的要求,促使他们的思维处于积极的良好状态,在合作中共同探究学习,并学会观察,相互提点,发现约分的实际概念。让学生在老师例举中找到约分的概念,尝试着进行概括,并从观察的分子、分母能否再变小,提出了最简分数的概念,通过举例、练习达到巩固的效果,这样本课的重、难点就迎刃而解了。】

三、自主探索,合作交流,总结方法。

【设计意图:在自学的过程中,学生们从书本上形成知识表象,对自学部分,及时进行反馈,并予以指导,特别在学习约分的两种形式时,教师的一步步板书,清晰明了,让学生在头脑中形成每一步的过程,形成的影象。】

四、巩固练习。

【设计意图:创设生活情景,提供了一些现实的学习材料,把书本知识与学生的日常生活联系起来,使学生感受到数学来自生活,并不抽象;学好数学,为生活、生产服务,学数学真有价值。题目充满趣味性。在引导学生积极观察、思考、联想、诱发学生的创新因素时,应注意引导学生克服固定的思维模式,鼓励独创性地发现知识的规律和发表自己的独特见解。】

五、提升总结

现在我们来回顾一下,今天这节课你有什么收获?

篇二:新人教版约分教学设计

新人教版约分教学设计(三)

教材简析与设计意图:

《约分》是人教版实验教材第十册内容,约分是分数基本性质的直接应用。新课标指出:义务教育阶段的数学课程应突出体现基础性、普及性和发展性,是数学教育面向全体学生,为学生的全面发展创造条件。要尊重学生身心发展特点和教育规律,转变教育观念,激发学生独立思考和创新意识,让学生既学会知识,又学会学习,使学生生动活泼积极主动地发展。

在约分教学中,注重培养学生的学习情感,激发发展动机;创造机会,提供发展条件;因材施教,扩大发展层面;激活思维,深化发展效果。引导学生积极主动地参与全过程,从而体现“以学生发展为本”的原则。

教学目标:1、经历知识的形成过程,使学生理解约分和最简分数的意义,探索约分的方法。

2、掌握约分的方法,能根据实际情况正确进行约分。

3、培养学生的观察、比较和归纳等思维能力。

教学重点:掌握约分的方法

教学难点:很快看出分子、分母的公因数,并能准确地判断约分的结果是不是最简分数。

教学过程:

一、情境导入,猜测验证

1、创设游泳情境,提出问题

师:让我们一起到游泳场看一场激烈的百米游泳比赛

(播放游泳比赛录像,学生聚精会神地观看比赛过程)

师:游在第一位的运动员已经游了75米。

师:一共100米,已经游了75米,看到这两个条件你能想到什么?

学生积极思考,各抒己见汇报自己的想法:

生1:还有25米没有游;

生2:已经游了全程的75/100;

生3:还剩全程的25/100没有游;

生4:已经游了全程的3/4;

生5:还有1/4没有游。

师:已经游了全程的 75/100和游了全程的3/4是一回事吗?

生1:不是

生2:是一回事

师:你能运用已经学过的知识验证你们的结论吗?

2、运用已经学过的知识进行验证

学生进行激烈的小组讨论并汇报

生: 我们组认为75/100=3/4,因为75÷100=0.75 3÷4=0.75 所以75/100=3/4

师:这是我们曾经学过的什么知识呢?

生:分数与除法的关系

师:你们运用分数与除法的关系找到它们是相等的,还有其他的验证方法吗?

生:我们运用分数的基本性质:75/100的分子和分母同时除以25,得到3/4。

师追问:为什么同时除以25?

生:25是75和100的最大公因数

师:你们组不仅运用了分数的基本性质,而且还找到了75和100的最大公因数25,从而验证出相等,能学以致用,多好啊!

(板书:75/100=3/4)

3、根据验证过程引出最简分数的意义

师:通过刚才的验证我们知道75/100=3/4,还能说出一些和3/4相等的分数吗?

生:6/8、12/16、15/20、30/40 ------

师:这些分数中哪个最简单,为什么?

生:3/4最简单,因为3/4的分子和分母是一对互质数。

师:什么是互质数?

生:公因数只有1的两个数是互质数。

师:其他同学听出来了吗,有个词用得很好?

生:是“只有”

师:对,我们就把分子和分母只有公因数1的这样的分数就叫做最简分数。

(板书:最简分数)

师:在黑板上你还能很快找出一个最简分数吗?

生:1/4

师:说说理由。

生:因为1/4的分子和分母只有公因数1,所以它是最简分数。

师:那你现在知道1/4和25/100的关系了吗?

生:也是相等的。

师:很好,你们还能再举出一些最简分数的例子吗?

学生举例

教师总结:同学们通过刚才的观察、猜测、验证得出了最简分数的意义,大家表现的非常好,下面我们就来把一个分数化简称最简分数。

二、自主探索约分的方法

1、 理解意义

出示例4 :把24/30化成最简分数

师:仔细读题,如何理解“化成最简分数”这句话。

生:就是把24/30变成和它大小相等,并且分子和分母的公因数只有1这样的分数。

师:同桌互相说一说该怎么做呢?

学生互说并汇报

生:24/30=24÷2/30÷2=12/15 12/15=12÷3/15÷3=4/5。

师:说说你是怎么想的?

生:先用24和30的公因数2去除,发现12/15不是最简分数,还有公因数3,再用3去除,最后得到最简分数4/5。

师:还有其他想法吗?

生:24/30=24÷6/30÷6=4/5 ,我是先找到24和30的最大公因数6,再用6去除分子和分母从而得到最简分数4/5。

师:同学们对比一下这两种方法,哪种更好一些呢?

生:找最大公因数的方法能更快地把一个分数化简成最简分数。

师小结:同学们运用分数的基本性质把24/30化简成最简分数,你们知道吗,刚才的这一过程叫做约分。(板书课题)

2、 学生独立探究,尝试约分

学生看书P85,约分的一般方法

师:看完后,你能回答小精灵提出的问题“每一步中都是用分子、分母的哪个公因数去除的?“

学生边回答教师边演示约分的步骤及方法,并强调书写格式

师:在把一个分数化简成最简分数时,如果能很快找到分子和分母的最大公因数,就可以用最大公因数去约分,如果一下子找不到最大公因数,可以一步一步地用公因数去约分。下面请你仿照这一方法,把8/12进行约分。

学生自己完成

三、综合练习

1、情境中折纸表示8/32

出示蛋糕图

师:用你们手中的圆片代表蛋糕,并很快表示它的8/32。

学生积极思考,有的认真观察分数,有的急于动手折8/32,最终出现两种折法。

生1:我是把圆片对折了5次,平均分成了32份,再表示出其中的8份。

师:你很认真的折出了这个蛋糕的8/32,就是时间长了些,为什么有些同学却折得很快呢?

生2:我只折了它的1/4。

师:为什么?

生2:我发现8/32的分子和分母都有最大公因数8,约分后得到1/4。

师:多好啊!通过你的认真观察,运用今天学的知识-----约分,很快地找到了这个蛋糕的“8/32”,真是个善于动脑筋的孩子。

师小结:学习约分不仅可以分蛋糕,还可以运用到生活中的很多地方,只要你是个善于观察善于思考的孩子,你一定能做得最好、用得更好。

2、下面哪些分数没有化成最简分数,请把它们化成最简分数。

16/24=4/6 15/36=5/12 28/42=14/21 16/12=8/6

3、用最简分数表示小明每项活动占全天时间的几分之几?

4、 我校六年级三个班在3.12的植树活动中,一班种了总数的17/30,二班种了总数的20/60,三班种了总数的7/30,你知道哪个植树最多吗?

生:20/60化简成10/30,在比较这三个分数的大小,发现哦一班种得最多。

师:你用约分的方法解决了生活中的实际问题,很好!完成了这道题后,同学们想说些什么呢?

生:看来约分不一定必须化简成最简分数,要根据实际而定。

师:说的多好啊!你们不仅会学以致用,而且还会根据实际情况灵活运用。

四、全课总结

师:今天这节课你有什么收获?

篇三:五年级下册《约分》教学设计

设计说明

本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:

1.把新知融入到有趣的情境中,激发学生的学习兴趣。

在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。

2.以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。

在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。

课前准备

教师准备 PPT课件 长方形纸

教学过程

复习巩固,情境导入,激发兴趣

1.求下面每组数的公因数。

42和50 15和5 8和21 18和12

2.大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。

认识约分

1.尝试“变分数”。

课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。

让学生了解“变化”的要求:

(1)这个分数要与的大小相等。

(2)这个分数的分子、分母要比的分子、分母小。

2.了解约分的概念。

(1)所变出的分数与原分数有什么关系?

(2)像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

(3)请学生说一说所变的分数是怎样得来的'。

观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。

3.认识最简分数。

(1)约分后的分子、分母能否再变小了?为什么?

(2)小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。

4.说出几个最简分数,强化最简分数的概念。

合作交流,总结方法

1.讨论:你能根据我们化简的过程找到约分的方法吗?

2.小结。

教师板书约分时一般采用的两种方法:

(1)逐步约分法。

如约分时,依次用12,18的公因数2和3去除,最后约分成。

(2)一次约分法。

如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。

3.小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。

设计意图:在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。

篇四:《约分》教学设计

一,创设情景,温故引新

1,口答.

3/4=9/( )=( )/20 8/24=( )/6=1/( )

50/125=( )/25=2/( ) 18/60=9/( )=( )/10

问答:请说出填写上上面各数的依据是什么

2,什么是互质数 怎样求最大公约数

3,说出能被2,3,5整除的数的特征.

二,激发兴趣,引出概念

教学最简分数的意义.

(1)提问:A,有一个分数18/24,你能不能找到与它大小相等,而分子分母又比它的分子分母小的分数

(2)分组交流:说说你是怎样找到的 你的依据是什么 找到3/4以后为什么不继续找了

板书: 18/24 =(18÷6)×(24÷6)= 3/4

述:像3/4这样的分数就叫做最简分数.

B,分析观察3/4,想想,什么叫做最简分数呢

※ P112 .做一做(上)

※ 请各举5个最简分数.

2,教学约分的意义与方法.

板书:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分.(通常是把一个分数约分成最简分数.)

(1)教学P112 .例 2: 把12/30约分

提问:A,想一想,怎样把这个分数进行约分

(用分子和分母的公约数(1除外)去除分数的分子和分母)

B, 约分时需要运用到什么知识

板书:

※ 先找出8/24的分子分母的公约数,再约分.想一想8/24用什么数去除可以使它更快地化成最简分数

※ 把12/30约分.

C,要使约分过程比较简便,应该怎样做

(直接用分子和分母的最大公约数去除则比较简便.)

板书: 12/30=(12÷6)/(30÷6)=2/5

※ P112 . 做一做(下)

三,巩固练习,提高能力

1,P113 . 1

2,找出最简分数.[课件4]

2/3 6/8 9/12 5/6 5/18 21/28 34/51

3,P113 . 3

四,课堂小结,抽象概括

今天我们学习了什么知识 谁能概括

五,家作

P113 . 2,4

板书设计: 约分的意义及方法

把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分.

P112 .例 2 把12/30约分

12/30=(12÷6)/(30÷6)=2/5

篇五:《约分》教学设计

活动目标:

1、经历知识的形成过程,理解约分的含义。

2、探索并掌握约分的方法,能正确地进行约分。

活动准备:

白纸

活动一:做一做

活动目标:理解约分和最简分数和含义,经历知识形成的过程。

复习:下面分数的分子和分母各有哪些公因数?最大公因数是几?2/3

10/15

12/15

8/12

4/7

30/60

师:今天我们利用上节课所学的知识,来对分数进行进一步地探索。

出示“做一做”:你会用分数表示图中的阴影部分吗?

学生独立完成后,集体反馈。

板书:1/3 2/6 4/12 8/12

师:请你观察上面几个分数,你能得到什么结论?

生可能会说:这几个分数都是相等的。

师:为什么这几个分数的分子和分母都不一样,分数的大小却是相等的?你能用前面学过的知识,解释同学的发现吗?

生可能会有两种方法:

一、用分子和分母的公因数一个一个去除:

8/24=8÷2/24÷2=4/12

4/12=4÷2/12÷2=2/6

2/6=2÷2/6÷2=1/3

把8/24的分子和分母都除以2得到4/12,根据分数的基本性质,分数的大小不变,所以8/24=4/12。

二、直接用两个数的最大公因数去除:

8/24=8÷8/24÷8=1/3

师:像这样,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。

现在1/3还能再约分吗?(不能)像1/3这样不能再约分了,叫做最简分数。

师:把一个分数化成最简分数,有时要约好几次,也可以这样写。(略)

活动二:试一试

活动目标:能正确地进行约分。

把16/48化成最简分数:你是怎样约分的?化成的最简分数是多少?

完成练一练第1题:圈出最简分数,并把其余的分数约分。

第2题:猜灯迷,连谜底。

第3题:比较分数的大小。后面几题能不能直接比较出它们的大小?应该怎么办?

第4题:写出三个与三分之二相等的分数。

约分的过程:1、应让学生体会是用分子和分母的公因数去除,一开始不要求用最大公因数去除;2、应注意指导约分的书写格式;3、应强调要约到最简分数为止;4、什么是最简分数应让学生先交流、思考。

复习找24和8的公因数与最大公因数,并板书在黑板上,为下面学生怎样去约分,采用什么方法约分奠定基础。

2、在让学生体会、理解约分的过程时,注意把分数的基本性质、找公因数与最大公因数和判断2、5、3倍数的特征等知识融会贯通,并根据教学过程中的具体情况教师作适当的解释与指导。

3、加强练习的指导过程,注意教学过程中的细节引导。

教学约分方法时,让学生融会惯通找出2,3,5的特征进行教学。同时还要考虑7,11,13,17,19和分子,分母是倍数关系的情况。

约分的方法并不难掌握,但是涉及到的旧知识比较多,有分数的基本性质、判断一个数是不是2、3、5的倍数的特征、找两个数的公因数等等,因此要正确熟练地将分数约分成最简分数,还需要下一定的功夫。首先要重视复习的作用。

数的整除中有关公因数、2、3、5的倍数、分数的基本性质与本节课约分的学习联系得极为密切,没有前者为知识基础,约分的学习将无法顺利进行。

篇六:《约分》教学设计

教学目标:

1、知识教学点:理解和掌握约分的意义和方法,掌握最简分数的概念

2、能力训练点:熟练进行约分培养灵活运用所学知识解决实际问题能力

3、德育渗透点:引导探索知识间的内在联系培养良好的学习习惯

教学重点:

掌握约分的方法

教学难点:

很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。

教学步骤:

一、铺垫孕伏

投影出示,思考30秒,能说的就站起来说

1、数能被2整除,能被5整除,能被3整除。

2、指出哪两个数是互质数3和8 12和18 5和12 3、说出28和42的公约数

4、填空根据性质

(复习能被2、5、3整除可以能很快看出分数的分子分母是否含有公约数2、5、3,

复习互质数,可为最简分数概念降低坡度。

复习公约数,为约分时除以公约数做必要辅垫。

填空是分数基本性质学习后的直接应用,也就是约分的变形形成。既说明分数基本性质,又引出下例。)

二、探究新知

1、教学例1

(1)出示例1:把化简

提问:看到例1这个题目,你想做些什么?

(2)引导学生自由问答,并板书:分子分母都比较小,同它相等

(3)提问:你准备怎样化简呢?根据思考题分小组讨论

①的分子分母含有公约数。

②用去除分子分母,得到。

(4)交流发言,生说师演示,再生说生演示师板书

(让学生猜想做什么,理解化简词义:化--转化、大小相符,简-简单、分子分母都比较小。出示思考题,分小组讨论自学,让学生自由主动地去学习、交流。

学生说,老师直观演示,再让学生边说边演示,让学生直观地体会到化简过程。)

2、教学最简分数和约分意义

提问:还能继续化简吗?为什么(因为3和4是互质数)

明确:分子、分母是互质数的分数,叫做最简分数(板书)

是最简分数,你还能举例吗?会说站起来说。

下面的分数是最简分数吗?

(出示P111上做一做)指出下面哪些分数是最简分数

(指着不是最简分数)这些不是最简分数,通常要像这样进行化简,这就是约分板书课题约分

提问:什么是约分,你能根据刚才的做法说说吗?

生试说,同桌说,指名说把一个分数比成同它相等,但分子分母都比较小的分数,叫做约分(板书)默读一遍

(先教学最简分数的概念,调整了教材的顺序,但更符合思维顺序。再指出不是最简分数的可进行化简,一方面说明化简的范围,又及时指出这就是约分的概念,显得自然。

由直观过程抽象概括出约分概念,体现从直观到抽象的教学过程。)

提问:又怎样来约分,怎样写呢?

3、教学例2

(1)出示例2:把约分

(2)分小组,根据思考题看书讨论①一般怎样约分,怎样写?

②也可怎约分,怎样写?

③约分要注意些什么?

(3)指名交流生说师板书

(4)小结:你能将3个问题连起来说吗?

(小组讨论自学例2约分,让学生先学,教师后教。对约分的几种形式正确书写,指出可用你喜欢的写法。)

4、反馈练习

P112下做一做把下面的分数约分

指名两生玻片书写,其余写在书上

讲评说出的约分过程,结合书写,表扬写得好的学生。

(目的在于掌握约分方法和书写形式,并结合书写表扬学得好写得好的学生,进行学习习惯的教育。)

三、巩固练习

1、P112 1观察下面每个分数的分子和分母,哪些有公约数2,哪些有公约数5?哪些有公约数3?

2、P112 3下面哪些分数没有约成最简分数

3、独立作业P112 2任选6题,放音乐《二泉映月》。

同桌互批全对得优,得优的同学可以站起来。

(抓住学生想既对又快做好的心理,以介绍经验的方法,调动练习的积极性,从而强调约分过程中的两个注意点。

练习1训练迅速找准约分过程中用几去除分子分母,

练习2用红绿卡判断并改正,明确约分结果一般要是最简分数。

作业让学生自选,体现自主性。并在音乐声中愉快完成,得优的同学可以自己站起来,感受到成功的喜悦。)

四、全课小结

学生小结

师小结:

今后作业中的分数,作为最后结果一般都要约成最简分数。

你能找出老师黑板上还有哪些分数要约成最简分数吗?

发现的可以自己上黑板来改。

我们要向他们学习,作业要认真仔细,做完要复看检查,好不好?

(针对约分过程中,容易出现的错误,引导学生主动勇敢地上黑板改错,这对反应快的学生又是一次成功的表现,并结合进行学习习惯教育。)

五、质疑

今天大家学得都很认真,还有没有什么问题你暂时不明白?

(质疑是对本课教学情况的再现反馈,也为下次课提供学生方面的真实情况)

篇七:《约分》教学设计

一.教学设计学科名称:北师大版五年级数学上册《约分》

二.所在班级情况,学生特点分析:

我校地处城郊,所带班级学生共25人,学生的思维比较活跃,比较善于提出数学问题,能在小组合作学习中主动探究知识。在学习约分之前,学生已经探索了分数的基本性质,学习了求最大公因数的方法,这些知识的掌握都为约分方法的学习提供了认知基础。在此基础上,学生可以更好地认识约分的含义,并掌握多种约分的方法。

三.教学内容分析:

根据教材的安排,本课时设计了这样3个层面的活动来帮助学生理解约分的含义,掌握约分的方法。首先是活动一,找相等分数的活动。学生通过游戏找出相等的分数,使本课得以从愉快中开始,调动学生的学习热情,激发学生的求知欲。活动二,用学过的知识解释这些分数相等的原因,目的是更好地帮助学生理解约分的概念,把握“最简分数”的含义。而最后的活动可以说是开放性的多项思维活动,培养学生的求异思维,更好地掌握约分的不同方法。

四.教学目标:

1、经历知识的形成过程,理解约分的含义。

2、探索并掌握约分的方法,能正确地进行约分。

3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

五.教学难点分析:

教学重点:理解最简分数及约分的意义和方法。

教学难点:掌握约分的方法 。

六.教学课时:一课时

七.教学过程

(一) 创境激趣

(媒体演示并配音:话说猪八戒跟着猴哥,通过分西瓜了解了分数的神奇。今天八戒途径蛋糕店,了不得,这里的蛋糕真是香飘千里。毫不犹豫,八戒买下一个大蛋糕。不行,美味不可独享,怎么也得给师傅留一块。想呀,想呀,八戒想出了这样的四种分法〈出示教材第47页的图案〉,他想把阴影部分的留给师傅。)

师:请同学们帮帮八戒,哪种分法给师傅的最多?

(评析:创设学生喜闻乐见的故事情境,有助于调动学生的学习情绪。一个好的.开始,就是成功的一半。)

(二) 实践探究

1、引导发现

师:(出示电脑课件例图)谁来说说看,哪种分法给师傅的最多?

学生立刻发现:四种分法给师傅的都一样多。

师:为什么给师傅都是一样多?你能用学过的知识解释一下吗?

生1:我们可以用4个分数表示图中的阴影部分:1/3、2/6 、4/12 、8/24 。我们学过分数的基本性质,所以知道这四个分数是相等的,所以4种分法给师傅的都一样多。

师:这4个分数之间到底都有怎样的关系?谁能说得更具体一些?

(小组内交流,每人选其中两个分数说一说。)

(评析:利用知识的迁移,使学生能够运用学过的知识解决新的问题。教给学生思考的方法。)

2、明确概念

师:同学们说得都非常清楚,八戒知道自己为什么又错了,夸咱们同学真聪明。现在请同学们观察黑板上的三个式子,你发现了什么?

生1:它们的分子和分母都同时除以了一个相同的数,所以这些分数的大小都不变。

生2:我给他补充,是同时除以它们的公因数。

师:说得非常准确(师用彩粉笔板书),这里的除数都是什么数?

生:分子和分母的公因数。

师:像这样,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。

师:还有什么发现?

生3:约分后这些分数的分子和分母都越来越小,但分数值都相等。

师:很好,这是约分的特点,谁来再说一遍?

生4:最后一个式子的得数 是 1/3不能“再往下除了”。

师:真好,你观察得非常认真,准确地说1/3不能再约分了。谁知道, 为什么不能“再约分了”?

生:因为1和3没有公因数。

师:回答得真棒。像1/3这样的分数,当分子和分母没有公因数的分数,我们把它叫做最简分数。

同学们,知道吗?我们要求把一个不是最简分数的分数进行约分,就是要求把不是最简分数的分数化成最简分数,也就是说,约分的最后结果应该是什么分数?

(评析:为学生提供了充分的时间和空间进行思考,帮助学生通过自己的观察和发现理解约分的含义。)

生:是最简分数。

师:谁能举个例子来说明,什么是最简分数?

(评析:数学概念一定要联系实际才能理解得更加清楚,不能简单的机械记忆。)

3、实践探究

师:再看八戒为我们带来的这4个分数,哪个是最简分数?

生:这4个数中, 1/3分数。

师:说说其它的3个为什么不是最简分数。

师:现在,请你从3个分数中任选一个进行约分,然后在小组内交流约分的方法。

师:请这两个同学来介绍一下约人的过程。

生1:我发现8和24有公因数2,8除以2等于4,24除以2等于12,4和12有公因数2,4除以2等于2,12除以2等于6,6和2有公因数2,6除以2等于3,2除以2等于1,所以8/24约分后等于 1/3

生2:我直接看,8和24的最大公因数是8,直接约分8/24=1/3 。

(评析:培养学生的求异思维能力。要求学生不是简单的模仿,应该有自己独特的思维。同时为学生提供小组学习交流的时间与空间,更有助于内向的学生发表自己的见解。)

师:比较两个同学的方法,有什么异同?你更喜欢哪一种?

生1:这两个同学都是用分子和分母的公因数去除,结果都是1/3 。不同的地方,第一种方法,除了好几次,第二种方法只除了1次就行,所以我喜欢第二种方法。

师:为什么第二种方法可以只除1次?

生:因为他求出了分子和分母的最大公因数,所以只除了1次就行。

师:都这样想吗?

生:我喜欢第一种方法,因为计算准确,不容易错。

师:两种方法都可以,但是无论哪一种方法,我们在约分的时候都应该注意什么?

(评析:不同方法的比较使学生对于约分的方法有了更加深刻地认识。但是对于学生的选择应当给予充分的尊重,我们认为好的对于学生来说并不一定也是最好的。)

生1:用公因数去除。

师:谁的公因数?能完整地说一遍吗?

生2:约分的结果应该是一个最简分数。

接着学生汇报2/6和 4/12约分方法。

师:谁能完整的说一说约分的方法和应注意的问题。

(评析:教师的提问有思考的价值,能够引发学生的思考。但是当学生的发言无序而散乱时,教师充分发挥了主导的作用,提升学生的认识。)

(三)、巩固练习

师:八戒感谢大家帮助他解决了今天遇到的难题,想请大家一起去赏灯。让我们和八戒一同前往吧!

1、第48页第2题。

(1) 学生独立连线。

(2)集体交流,为什么这样连?(媒体演示)

2、第48页第1题。

(1)学生试做。

(2)集体交流。

师:约分时怎样才能又对又快,你的心得是什么?

生1:看分子和分母的个位,如果是2和5的倍数就可以直接除以2和5。

师:也就是说需要我们准确判断出是几的倍数,快速进行约分,对吗?

生2:像分子和分母之间是倍数关系的,可以直接得到几分之一。

……

师:这些方法都很好,我们在约分的时候,注意观察和思考,不要盲目进行。

(评析:练习的设计应该是这样,每一道题都使学生有所收获,教师应该帮助学生及时收集这些方法,提高学生的熟练程度。)

3、教材第48页第3题,比较大小。

(1) 学生试做

(2)小组内交流比较好的方法。

(3)反馈信息

4、小小投递员

师: 噫!八戒哪里去了?(出示电脑课件)原来在这里。八戒又遇到了什么难题?

(课件演示)要求每个同学一封信,信封上的分数的分数值与哪个小房子上的数相同,就把信送到那所小房子的下面。

生完成送信活动,集体评议。

(评析:游戏是学生最愿意参与的学习方式,寓教于乐。)

(四)全课总结:通过本课的学习,你有什么收获?

八.课堂练习:见上述教学设计中。

九.作业安排:

1、约分在单位换算中的应用。

在( )里填上最简分数。

6分米=( )米 40厘米=( )米

15秒=( )分 25分=( )时

2、约分在小数化分数中的应用。

把下面个小数化成分数,能约分的要约成最简分数。

0.6 0.45 0.37 0.75 1.5 3.25

篇八:《约分》教学设计

一、教学目标。

1.知识目标:理解和掌握约分的含义和方法,掌握最简分数的特征。

2.能力目标:很快找出分子和分母的公因数进行约分。

3.情感目标:培养学生应用所学知识解决问题的能力,体验数学的价值。

二、教学重点、难点与关键。

教学重点:理解约分的意义、掌握约分的方法。

教学难点:很快看出分子、分母的公因数,并能准确地判断约分的结果是不是最简分数。

教学关键:通过实例,引导学生理解约分的含义及依据,从而掌握约分的方法。

三、教学准备。

电脑课件等。

四、教学过程。

一、复习导入

1、提问:你能很快找出下面各数的最大公因数吗? 9和18 15和21 7和94和24 20和28 11和13

2、在括号里填上适当的数,并说出你的依据。 8/24=4/()=()/3

5/9=()/18=15/()

依据是:分数的基本性质。

(二)探究新知

1、创设游泳情境,提出问题师:同学们,实验小学正在举办春季运动会。让我们一起到游泳场观看一场激烈的百米

游泳比赛吧!(播放游泳比赛录像)师:请同学们先独立思考一下,两个同学,一个认为他游了全程的75/100,另一个认为

他游了全程的3/4。这两种说法是一回事吗?为什么?下面在小组内交流一下,说一说自己是怎样想的? 组1:我们组认为75/100=3/4,我们运用分数的基本性质:75/100的分子和分母同时除以25,得到3/4。75/100=75÷25/100÷25=3/4。 组2:我们组也认为75/100=3/4,3/4的分子和分母同时乘25,得到75/100。3/4=3×25/4×25=75/100。

2、小兵在这次比赛中已经游了60米,他游了全程的几分之几? 生1:60/100 生2:他游了全程的6/10.生3:也可以说是3/5.

3、那么60/100 6/10 和3/5这3个分数有什么关系?

4、同学们刚才我们把75/100化成3/4 。60/100 化成 6/10和3/5。像这样把一个分数化成同它相等,但分子分母都比较小的分数叫约分。(板题:约分)今天我们就来学习约分。。

5、师:下面请同学们观察前面接触的这些分数,想一想后面的一组分数有什么特点?小组内说一说。

6、哪个小组说说你们小组的发现。

7、像 3/4 3/5这样,分子和分母只有公因数1的分数叫做最简分数。(板书)

8、师:哪位同学还能再举出一些最简分数的例子?(学生举例,全班判断。)

9、练一练:

(1)完成教材第84页“做一做”的第1、2题。

(2)分母是10的真分数中,最简分数有哪些?(学生汇报,教师板书)

10、试一试:请同学们在自己的练习本上,把 24/30化成最简分数,

11、哪位同学来说一说你是如何把24/30化成最简分数的?

12、根据同学们的约分方法和过程下面小组内讨论一下,

(1)一般怎样约分?

(2)有没有更简便的方法进行约分?

(3)约分要注意些什么?

(4)怎样书写?

13、哪个小组来说一说你们小组的观点。 生1:用分子和分母的公因数一步一步去除。 生2:直接用分子和分母的最大公因数去除。 生3:注意约分一般约到结果是最简分数为止。 生4:我们小组认为采取划线去除的方法更简洁些。

(三)、巩固练习

1、完成教材第85面的“做一做”。学生独立完成,先判断哪些是最简分数,再把不是最

简分数的化成最简分数。

2、86页第2题。

3、86页第4题.

4、一盒蛋黄酥,哥哥分得3/5盒,弟弟分得4/10盒,谁分到的蛋黄酥比较多?(用两种方法解答)

5、动脑筋:

有一天,蛋糕痁的老板想招聘一名服务员,来应聘的人还真不少。老板准备了一个磨盘大的蛋糕,要求应聘者在最短的时间内切出这块蛋糕的 45/60。大家都觉得这位老板在故意为难大家,因为认磨盘大的蛋糕要完整地切出它的45/60本身就是一件很困难的事,何况还要在2分钟内完成。就在大家议论纷纷的时候。有个小伙子走到蛋糕前,用了一分钟的时间把蛋糕切了下来递给了老板,大家都愣住了。你知道小伙子怎样切的吗?

(四)、全课总结

1、今天的学习你有哪些收获?

2、你还有哪些疑问?篇三:小学五年级约分教学设计 课题:第四单元《分数的意义和性质》《约分》 教学内容: 最简分数的意义和约分的意义。(教材第84页例3、教材第85页例4及教材第85页“做 一做”)

篇九:《约分》教学设计

约分是分式约分,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫约分。小学五年级约分教学设计,我们来了解一下。

1、经历知识的形成过程,理解约分的含义,探索并掌握约分的方法,能正确地进行约分。

2、让学生动手折一折,比一比,理解约分的意义;再激活已学的知识探讨约分的方法,进而理解最简分数的形成,通过交流比较,形成自己的约分技巧。

教学重点

教学难点理解约分的意义,能正确进行约分

教学方法知识迁移法 看图学习

教学准备相关课件及每生自备三张大小相同的作业纸

教学过程:

一、温故入新

1、复习

(1)分数有什么性质?

(2)什么叫做两个数的公因数,最大公因数?

(3)什么叫互质数?举例

2、导入新课

(1)跟老师折一折

取出三张同样大小的长方纸,沿长方向3折,用阴影表示出其中的一份。

取出其中两张,再沿宽方向对折,再取出一张写出阴影这时对应的分数。

将对折后的另一张,沿宽方向再对折一次,写出阴影对应的分数。

(2)想一想:上面的折纸,从右往左看,你能得到什么结论?

4/12=2/6=1/3

(3)能用学过的知识来解释所有的结论吗?

让学生议一议老师小结引出课题:约分

二、师生共研

1、约分的意义与方法探究

(1)教学例2。出示主题图

能把这个分数化成与原数相等而分子分母都比较小的分数吗?

学生独立完成后说说化法,老师板书典型。

(2)小结归纳约分的意义。

怎样做到分数与原分数相等

约分到什么程度才是分子、分母却比较小

2、约分格式及策略探究

(1)板书强调格式

(2)引导学生分析左右两边的约分的策略

3、最简分数的意义

通过分析得出:约分的终结就是使分子分母互质。

引出最简分数的意义,让学生在书上勾出概念。

4、梳理

约分

大不不变:要运用分数的基本性质执行

分子分母都比较小的分数,分子分母互质

5、试一试

把18/24、6/18、10/35化成最简分数。

让学生独立完成,再交流评正

三、课堂活动轻松游戏

一个同学任意写出一个分数,另一个同学判断是不是最简分数,并说出理由。

四、全课总结

理解约分的性质,掌握约分的方法

五、布置作业:4、5、6

篇十:《约分》教学设计

教学目标:

1、使学生理解约分和最简分数的意义,掌握约分的方法,能够正确地进行约分;培养学生综合运用已有知识解决问题的能力.

2、渗透恒等变换思想.

教学重点:

最简分数的概念.

教学难点:

约分的方法和正确的书写格式.

教学课型:

新授课

教具准备:

课件

一、出示课题,学习目标

理解约分和最简分数的意义,掌握约分的方法,能够正确地进行约分;培养学生综合运用已有知识解决问题的能力.

二、出示自学指导认真看课本学习、掌握约分的方法,能够正确地进行约分;培养学生综合运用已有知识解决问题的能力.

三、学生看书,自学

四、效果检测

最简分数的意义.

(1)提问:A,有一个分数18/24,你能不能找到与它大小相等,而分子分母又比它的分子分母小的分数

(2)分组交流:说说你是怎样找到的 你的依据是什么 找到3/4以后为什么不继续找了

板书: 18/24 =(18÷6)×(24÷6)= 3/4

述:像3/4这样的分数就叫做最简分数.

B,分析观察3/4,想想,什么叫做最简分数呢

※ P112 .做一做(上)

※ 请各举5个最简分数.

约分的意义与方法.

板书:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分.(通常是把一个分数约分成最简分数.)

(1)教学P112 .例 2: 把12/30约分

提问:A,想一想,怎样把这个分数进行约分

(用分子和分母的公约数(1除外)去除分数的分子和分母)

B, 约分时需要运用到什么知识

板书:

※ 先找出8/24的分子分母的公约数,再约分.想一想8/24用什么数去除可以使它更快地化成最简分数 [课件3]

※ 把12/30约分.

C,要使约分过程比较简便,应该怎样做

(直接用分子和分母的最大公约数去除则比较简便.)

板书: 12/30=(12÷6)/(30÷6)=2/5

※ P112 . 做一做(下)

五、重点指导

1,P113 . 1

2,找出最简分数.[课件4]

2/3 6/8 9/12 5/6 5/18 21/28 34/51

3,P113 . 3

六、课堂小结,抽象概括

今天我们学习了什么知识 谁能概括

家作

P113 . 2,4

板书设计: 约分的意义及方法

把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分.

P112 .例 2 把12/30约分

12/30=(12÷6)/(30÷6)=2/5

课后反思:

篇十一:《约分》教学设计

约分是分数基本性质的一种应用,是学生已经掌握了分数的基本性质的基础上进行教学的。同时,约分是与分数的比较大小、分数的四则运算紧密联系的,因此,必须使学生切实掌握好。

教学目标:

根据本课的教学内容和学生的特点,我确定了以下教学目标:

1、经历知识的形成过程,理解约分的含义。

2、探索并掌握约分的方法,能正确地进行约分

3、培养学生良好的书写习惯和检查习惯。

教材的重点和难点:

理解约分的意义,掌握约分的方法。

教法:

1、讨论法。通过学生的讨论让他们自己总结归纳出约分的意义和方法。

2、循循善诱,帮助学生理解约分的算理,启发引导学生,鼓励学生积极发言,引导学生动口、动脑、动手,逐步掌握新知。

3、运用不同形式的练习,使学生巩固了所学的知识,使教学得到反馈。

附:

教学设计

一、复习准备

提问:各题的依据是什么?

2、说出下面各组数的最大公因数。

45和1530和1228和42

13和3936和2729和30

教师:学习了分数基本性质后,我们可以把一个分数的分子和分母同时乘以或除以相同的数(零除外),得到一个与原来分数相等的新分数。今天我们来研究怎样把一个分数化成与它相等,而分子、分母又比较小的分数。

二、学习新课

1、最简分数与约分的意义。

能利用我们学过的旧知识把它变为大小相等,而分子、分母又比较小的分数?(学生试算,小组讨论后汇报。)

教师:请再说一说第一步,第二步是怎样做的?(用分子、分母的公约数分别去除分子和分母。)像这样,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫约分。

问:为什么得出后就不再继续算呢?师:像这样不能再约分了,这样的分数是最简分数。

(2)练习:请指出下面哪些分数是最简分数。

教师:请两人一组,各举出5个最简分数。

2、约分的一般书写格式。

教师:约分时,一般要连续地做除法口算,如果像上面例题那样写,比较繁,一般采用省略除数,直接写出商的形式来写。

教师边板书边介绍:

学生练习:

板书:

教师:由上可见,要使约分过程比较简便,应该怎样做?(选用分子和分母的最大公约数去除。)

(3)练习

把下面各分数约数:

(设想:约分是分数基本性质的直接应用,所以约分的方法让学生试算,自己去掌握。最简分数的概念,放在试算化简之后,这样可以使学生对概念的认识有充分的感知基础。约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求两个数的最大公约数,另外,也要掌握好约分一般书写格式)

三、巩固反馈

1、书本上的“练一练”第1———3题

2、判断正误,并说明理由。

3、书本上的“练一练”第4题

四、课堂总结

1、最简分数?

2、什么是约分?怎样约分?

(设想:在复习准备和巩固反馈中,都安排了较多的,形式多样的练习进行训练,以提高学生约分的能力。)

篇十二:《约分》教学设计

教学目标

1.使学生认识约分和最简分数的意义,理解和掌握约分的方法。

2.培养学生的观察、比较和归纳等思维能力。

教学重点

掌握约分的方法。

教学难点

很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。

教学过程

一、情境导入,复习巩固,激发兴趣。

1.指出下面每组数中的公约数(1除外)。

42和50、15和5、

8和21、18和12

2.孩子们对孙悟空这一神话人物充满好奇,以和悟空比本领谈话导入,引发大家的学习兴趣,紧接着回顾求公约数和分数的基本性质,明确又简单,为理解最简分数和掌握约分的方法作好准备。用一句简短而富有神秘挑战性的话语“大家都知道孙悟空有72变,特神奇,你们想不想也学一招?好,这节课我们就来创造第73变,变分数!”来激发学生学习新知识的激情。

二、理解最简分数及约分的意义。

1.尝试“变”分数。

例1:把化简。

活动要求:

(1)这个分数要和大小相等。

(2)这个分数的分子、分母要比的分子、分母小。

(3)要求学生变出一个和大小相等,但分子、分母都比较小的分数。把变出的分数写在自己的作业纸上,能变几个就变几个。

2.了解约分的概念。

(1)观察所变出的分数与有什么关系?

(2)像这样,把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。举例:把化成就是约分。

与四人小组内的同学说一说变的分数是怎样得来的。

观察后发现分数大小相等,但分子、分母都比原来分数的分子、分母小。

3.认识最简分数。

(1)观察的分子、分母能否再变小了?为什么?

(2)像这样分子、分母是互质数的分数,叫做最简分数。

(3)找出最简分数练习。

举例说出几个最简分数。强化最简分数的概念.

三、自主探索,合作交流,总结方法。

1.你能根据我们化简的过程找到约分的方法吗?

打开书P62,看看书上是如何说的?

2.自主探索约分的形式。把一个分数进行约分?

教师板书约分时一般采用的两种形式。

A、逐次约分法。

B、一次约分法。

如果能很快看出18和42的最大公约数,也可直接用6去除,一次约分得。

3.小结:我们既可以用它们分子、分母的公约数去除,一步一步来约分;也可以用最大公约数去除,直接约分。

有恰当的学生自学引导:在自学的过程中,学生们从书本上形成知识表象,对自学部分,及时进行反馈,并予以指导,特别在学习约分的两种形式时,教师的一步步板书,清晰明了,让学生在头脑中形成每一步的过程,形成的影象。

四、巩固练习。

1.说出分母是4的所有最简真分数。写出分母是9的所有最简真分数。

2.先判断哪些分数是最简分数,把不是最简分数的分数进行约分。

4.用最简分数表示出小明每一项内容占一天总时间的几分之几?

上学8小时

睡眠10小时

劳动1小时

做家庭作业2小时(含课外阅读时间)

餐饮休闲3小时

5.每人从信封袋中挑选一个自己最喜欢的分数卡片。

(1)最简分数上台。和最简分数相同的分数起立。

(2)从剩下的同学中找到自己的好朋友。帮最后两名同学找最简分数作朋友。

判断并说明理由。

五、总结提升

现在我们来回顾一下,今天这节课你有什么收获?了解了什么是约分、最简分数、怎样约分……

篇十三:《约分》教学设计

一教学内容

约分(一)

教材第84页的内容。

二教学目标

1.通过教学,使学生理解最简分数和约分的意义,掌握约分的方法。

2.培养学生应用所学数学知识解决问题的能力。

三重点难点

归纳、概括出最简分数的概念及约分的方法。

四教具准备

投影。

五教学过程

(一)导入

(1)提问:你能很快找出下面各组数的最大公因数吗?

9和1815和217和94和2420和2811和13

(2)提问:你是怎样找出两个数的最大公因数的?求两个数的最大公因数有几种情况?

小结:求两个数的最大公因数时,有两种特殊情况:一种是两个数成倍数关系,较小数就是两个数的最大公因数;另一种是两个数的公因数只有1,它们的最大公因数就是1。

(二)教学实施

1.出示例3。

提问:两个同学,一个认为他游了全程的,另一个认为他游了全程的。这两种说法是一回事吗?为什么?

学生独立思考后集体交流,说一说自己是怎样想的?

可以从以下两个角度思考:

(l)

(2)

2.提问:的分子和分母有什么关系?

学生观察后回答:的分子和分母只有公因数1,这样的分数叫做最简分数。

3.提问:你还能举出最简分数的例子吗?(学生举例,全班判断。)

4.完成教材第84页“做一做”的第1、2题。

学生独立完成,集体订正。第2题可以把不是最简分数的化成最简分数,然后比较找出相等的分数。

(三)思维训练:

1.把下面的分数约分后,再按照从小到大的顺序排列起来。

2.下面这个分数的分子、分母是由1一9九个数字组成的。你能把它化成最简分数吗?

3.一个分数约分,用2约了一次,用3约了两次,得。原来这个分数是多少?

后记:

篇十四:《约分》教学设计

教学内容:

义务教育教科书五年级下册第64页《约分》。

教学目标:

1、进一步理解分数的基本性质,并能运用分数的基本性质约分。

2、理解“约分”“最简分数”的含义,掌握约分的一般方法,学会约分的数学形式。

3、在应用知识的过程中,体验数学的价值,渗透恒等变换思想,感受数学的简洁美。

教学重点:理解约分的含义;掌握约分的方法。

教学难点:能准确的判断约分的结果是不是最简分数。

教学具准备:圆片,课件。

教学设计:

一、情境引入

师:上课,同学们好!请看,这是我们安阳最美的公园——易园。这里风景优美,绿化率达到75%。75/100究竟有多大?大家都有一张圆形设计纸,你能在1分钟之内涂出这个圆的75/100吗?

准备。开始。时间到。

师:涂好了吗?请你说。

哦!你涂出来这个圆的3/4?(想法很大胆)

这符合涂出75/100的要求吗?说说你的理由?

生:嗯,你运用了分数的基本性质,把75/100化成了3/4。

你的想法很独特,有没有道理呢?让我们一起来验证一下。

二、验证和比较,理解约分的意义

1、验证:怎样根据分数的基本性质把75/100化成3/4?

(小组合作,把验证过程写出来。)

(你很勇敢,第一个举起手来,请你代表你们小组说)

生:你们小组是根据分数的基本性质,把75/100分子分母同时除以25得到3/4。

(看来,帮分数瘦身,可以把复杂的问题简单化。)

其实,把75/100化成3/4的过程就叫约分。(板书课题)谁来试着说说什么叫约分?

对,像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。(板书概念)

再给你的同桌说说什么叫约分。

(二)、探究约分的方法

1、 学以致用,走进生活。

我们借助易园的绿化率,经过自主探究,知道了什么叫约分。我们再次把目光投向易园,这里优美的环境,清新的空气吸引了不少中老年人前来锻炼,据统计,中老年锻炼人数约占易园锻炼人数的24/30。请你试着把这个数约分,并和同桌交流一下是怎么约分的?

谁来说?(一个个自信十足的样子,真好!)

2、交流探究结果。

(1)24/30=24÷2/30÷2=12/15 (你是说)

(2)24/30=24÷3/30÷3=8/10 (你想说)

(3)24/30=24÷2/30÷2=12/15=12÷3/15÷3=4/5(你认为)

(4)24/30=24÷6/30÷6=4/5 (你觉得)

还有不同的约分方法吗?(没了)

请看,这4个同学约分的方法。仔细观察有什么相同点和不同点?

3、对比分析

(先想一想,再小组交流)。

师:哪个小组来大胆的分享下你们的想法?

生:你们小组认为:相同点是这四种方法都是根据分数的基本性质用分子、分母除以他们的公因数。

那不同点呢?第一种方法和第二种方法都可以再约分,第三种方法和第四种方法不能再约分了。(语言组织的真好,表达能力真棒!)

师:为什么不能再约分了?

生:一个个迫不及待的想说了,你说。他们的公因数只有1了。

师:对,像这样,分子和分母只有公因数1的分数,叫做最简分数。(板书概念)

你能说出几个最简分数吗?2/3,4/9(哦,你们的理解能力真强!)

约分时,我们通常要约成最简分数。

师:再回过头来看这几种约分的方法?你最喜欢哪种?

为什么?

生:你喜欢第四种方法。因为第四种方法是直接用最大公因数去除的,约分的结果既是最简分数,过程又简单。

师:你表达的真清晰!

5、介绍约分的书写格式。

师:约分还可以这样写。(课件直观演示)

(先用30和24同时除以它们的公因数2得到12/15,就在分子的上面分母的下面写上12和15。再把12和15同时除以公因数3等于4/5,最后结果等于4/5。

谁能像这样把这种最简便的方法表示出来。请你来。你把30和24同时除以它们的最大公因数6得到4/5。)真是聪明的孩子!

对比这两种方法,哪种方法更简便?

大家一致认同第二种方法更简便。

6、小结。

约分时,如果能一眼看出分子和分母的最大公因数,用最大公因数约分,既能保证约分的结果是最简分数,又能一步完成约分。

3、知识应用(课件演示)

大家不仅知道了什么叫约分,而且还掌握了约分的方法。让我们运用所学知识来解决问题吧。

易园的'各项实施科学、合理。请看相关数据。

道路广场面积约占易园总面积的 12/64

水面面积约占易园总面积的3/32

儿童游乐场所面积约占易园总面积的4/60

建筑面积约占易园总面积的2/24

指出哪些分数是最简分数?把不是最简分数的化成最简分数?

2、孩子们,美丽的景色离不开园林工人的辛勤维护。看,这是园林工人的一天。(用最简分数表示每个项目占一天总时间的几分之几?)

园林工人的一天

项目

工作

睡眠

家务

锻炼

其他

所用时间:小时

8

9

2

1

4

园林工人每天浇水时间占工作总时间的()/8.

(这是一个最简真分数。)可能是()()()()。

了不起1这么难的题都能解决。今天你们的表现太出色了!

四、课堂小结

孩子们,这节课你有什么收获?

你们经过积极思考,知道了约分的意义.

还自己探索出了约分的方法,享受到了成功的喜悦!

让我们带着这满满的收获,期待下节课的学习!下课!

word该篇DOC格式最新人教版五年级约分教学设计(精选14篇)范文,共有20309个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
最新人教版五年级约分教学设计(精选14篇)下载
最新人教版五年级约分教学设计(精选14篇).doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无