【引言】《勾股定理》教案【精品多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
八年级数学《勾股定理》教案 篇一
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念.
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力.
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣.
(2)在解决实际问题的过程中,体验数学学习的实用性.
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.
教学准备:
多媒体
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.
学生汇总了四种方案:
(1) (2) (3)(4)
学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.
如图:
(1)中A→B的路线长为:AA’+d;
(2)中A→B的路线长为:AA’+A’B>AB;
(3)中A→B的路线长为:AO+OB>AB;
(4)中A→B的路线长为:AB.
得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则。
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?
2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.
3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?
第五环节 课堂小结(3分钟,师生问答)
内容:
1、如何利用勾股定理及逆定理解决最短路程问题?
第六 环节:布置作业(2分钟,学生分别记录)
内容:
作业:1.课本习题1.5第1,2,3题.
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:
教学反思:
勾股定理教案 篇二
教学课题:勾股定理的应用
教学时间(日期、课时):
教材分析:
学情分析:
教 学目标:
能运用勾股定理及直角三角形的判定条件解决实际问题。
在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。
教学准备
《数学学与练》
集体备课意见和主要参考资料
页边批注
教学过程
一、新课导入
本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:
一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流 。
创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:底端也滑动 0.5m;如果梯子的顶端滑到地面 上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端 下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等);通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题 ,从中感受用数学的眼光审视客观世界的乐趣 。
二、新课讲授
问题一 在上面的情境中,如果梯子的顶端下滑 1m,那么梯子的底端滑动多少米?
组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导。
问题二 从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流。
设计问题二促使学生能主动积 极地从数学的角度思考实际问题。教学中学生可能会有多种思考、比如,①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;②因为梯子顶端 下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法、
3、例题教学
课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题。通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智、
三、巩固练习
1、甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km。
2、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( )。
(A)20cm (B)10cm (C)14cm (D)无法确定
3、如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m。求这块草坪的面积。
四、小结
我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角 三角形中的任意两边就可以依据勾股定理求出第三边。从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要 依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程。
《勾股定理》优秀教案 篇三
一、学生知识状况分析
本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析
本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。具体内容是运用勾股定理及其逆定理解决简单的实际问题。当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:
1、通过观察图形,探索图形间的关系,发展学生的空间观念。
2、在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点。
四、教法学法
1、教学方法
引导—探究—归纳
本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,顺势教学过程;
(3)利用探索研究手段,通过思维深入,领悟教学过程。
2、课前准备
教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具。
五、教学过程分析
本节课设计了七个环节、第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
1.3勾股定理的应用:课后练习
一、问题引入:
1、勾股定理:直角三角形两直角边的________等于________。如果用a,b和c表示直角三角形的两直角边和斜边,那么________。
2、勾股定理逆定理:如果三角形三边长a,b,c满足________,那么这个三角形是直角三角形。
1.3勾股定理的应用:同步检测
1、为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )
A、0.7米B、0.8米C、0.9米D、1.0米
2、小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米、小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个( )
A、锐角弯B、钝角弯C、直角弯D、不能确定
3、如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A、5≤a≤12 B、5≤a≤13 C、12≤a≤13 D、12≤a≤15
4、一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组。
A、13,12,12 B、12,12,8 C、13,10,12 D、5,8,4
《勾股定理》优秀教案 篇四
1、勾股定理
勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.
即直角三角形两直角的平方和等于斜边的平方.
因此,在运用勾股定理计算三角形的边长时,要注意如下三点:
(1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形;
(2)注意分清斜边和直角边,避免盲目代入公式致错;
(3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长.即c2=a2+b2,a2=c2-b2,b2=c2-a2.
2.学会用拼图法验证勾股定理
拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.
如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.
请读者证明.
如上图示,在图(1)中,利用图1边长为a,b,c的四个直角三角形拼成的一个以c为边长的正方形,则图2(1)中的小正方形的边长为(b-a),面积为(b-a)2,四个直角三角形的面积为4×ab=2ab.
由图(1)可知,大正方形的面积=四个直角三角形的面积+小正方形的的面积,即c2=(b-a)2+2ab,则a2+b2=c2问题得证.
请同学们自己证明图(2)、(3).
3.在数轴上表示无理数
将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.
二、典例精析
例1如果直角三角形的斜边与一条直角边的长分别是13cm和5cm,那么这个直角三角形的面积是cm2.
分析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可.根据勾股定理公式的变形,可求得.
解:由勾股定理,得
132-52=144,所以另一条直角边的长为12.
所以这个直角三角形的面积是×12×5=30(cm2).
例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点A爬到
顶点B,则它走过的最短路程为()
A.B.C.3aD.分析:本题显然与例2属同种类型,思路相同.但正方体的
各棱长相等,因此只有一种展开图.
解:将正方体侧面展开
你也可以在好范文网搜索更多本站小编为你整理的其他《勾股定理》教案【精品多篇】范文。