[编辑]平行四边形教案(新版多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
平行四边形 篇一
第二课时:平行四边形面积的计算练习课
教学内容:练习二1 — 5题
教学目标:使学生进一步熟悉平行四边形的面积公式并能熟练地加以运用。
教学过程:
练习二:
第1题:使学生画出的平行四边形面积与图中长方形面积相等,平行四边形底与高的乘积为15。所画平行四边形的底和高分别为5和3、3和5或15和1。
第2题:学生在测量时一定要注意底和高必须是对应的一组。
第3题:要告诉学生用途中标出的数据计算出来的面积是近似值。这种近似的测量和计算在实际生活中经常用到。
第5题:可以让同桌两人分别准备一样大小的长方形框架。操作时,一个长方形不动,另一个长方形拉成平行四边形。通过观察、比较后要明确两点:
1、把长方形拉成平行四边形后,周长没变,面积变了。
2、拉成的平行四边形越是显得扁平,它的高就越短,面积就会越小
平行四边形的认识教案 篇二
教学目标
1、让学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征。
2、让学生在活动中进一步积累认识图形的学习经验,学会做一个平行四边形,会在在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形。
3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形的学习兴趣。
教学重点
进一步认识平行四边形,发现平行四边形的基本特征。
教学难点
进一步认识平行四边形,发现平行四边形的基本特征。
教具
三角形框架、长方形框架、正方形框架,分别长5cm、10cm、15cm、20cm的纸条不等,大头钉。
课时 一课时
教学过程
一、导入
1、复习学过的三角形、长方形和正方形。
师:同学们喜欢玩游戏吗?学习新课之前我们来玩一个猜图游戏。(教具三角形框架、长方形框架、正方形框架)
2、师:同学们真棒!现在老师要变一个魔术给你们看。看看你们能不能认出它。(拿出长方形教具,拉动长方形框架对角使其变为另一个图形。)根据学生的回答,板书:认识平行四边形。一边板书,一边说“今天,我们就来认识平面图形家族的另一个新成员平行四边形。相信通过这节课我们一起来进一步研究平行四边形,相信通过研究,我们会有新的收获。
二、探索新知
1、找平行四边形。
师:同学们每天都要经过校门进入校园,但是你们注意观察我们的校园了吗?翻开书本三十七页,在图中你们能找到平行四边形吗?
在主题上找,在学校里找,在身边生活中找。
师:你们还能找出生活中的一些平行四边形吗?(如活动衣架、风筝、楼梯栏杆)
2、画平行四边形
(1)师:你们想把刚才在生活中找到的平行四边形在电子图中画出来吗?(生答)在38页的点子图中画出来。
(2)展示作品,引导学生参与评价。
3、做平行四边形
(1)师:现在各小组手上都有很多纸条,那我们可不可以自己动手做一个平行四边形呢?
每一小组发教具纸条(5cm、10cm各一条,15cm、20cm各两条),用大头钉固定。同学们自己动手做平行四边形。(可随意交流。)做完后,派代表说一说心得。
(2)老师可以提问,如:
a、师:你们小组是怎样做的这个平行四边形呢?
b、师:你们在做的过程中发现了什么?等等。
4、平行四边形的特性
师:我们老师告诉我平行四边形还会听口令呢,我们来试试,我们一起喊向左--向右--变大--变小。看看你们手中的也会不会听口令呢?
设疑:师:三角形也会听口令吗?(摆弄三角形框架)
(在通过动手操作的过程中,学生不难发现平行四边形的易变性)
然后在分组让同学们拉一下三角形的框架和平行四边形的框架,进行比较,有同学们总结出:
平行四边形的特性--易变性 三角形的特性--稳定性(板书)
介绍三角形的稳定性在生活中的应用--电线杆的拉线、篮球架
介绍平行四边形的易变性在生活中的应用--升降架、伸缩拉门
(出示课件或者图片)
5、认识平行四边形的特点--对边相等
提问:师:平行四边形有几条边围成?演示:板书(上、下、左、右) 设疑:师:是否随意四条边就可以组成平行四边形呢?
(有学生总结出)从做的过程中发现是不能的,且对边相等。
小结:平行四边形的对边相等。(板书)
6、练习
(1)书本39页练习题1、2题。
(2)第三题大家一起讨论。
三、作业
总结 师:这节课我们认识了一个新图形--平行四边形,并知道我们在生活中找到它。请你们对生活中的物体在进行,去找一找我们今天认识的这个新图形。
板书设计
认识平行四边形
三角形的特性--稳定性
上
平行四边形的特性--易变性 右
左
平行四边形的特点--对边相等 下
《认识平行四边形》说课
一、说教材
认识平行四边形这节课是在学生已经直观认识平行四边形,初步掌握了长方形、正方形、三角形的特征,认识了平行与相交的基础上,通过一系列的探究实践活动继续认识平行四边形,了解对边分别平行和对边相等的特征。这部分的内容是以后学习习近平行四边形面积的基础,有利于提高学生的动手能力,增强创新意识,进一步发展学生对“空间与图形”的学习兴趣。
二、说目标
1、知识与技能目标
(1)理解平行四边形的概念及其特征。
(2)培养学生实践能力,观察能力、分析能力。
2、过程与方法目标
让学生通过动手操作,动眼观察,动口表达、动脑思考等方式探究新知。
3、情感态度与价值观目标
让学生感受图形与生活的密切联系,在探索中感受成功的乐趣。
三、说教学重难点
进一步认识平行四边形,发现平行四边形的基本特征。
四、说教法和学法
(一)说教法
根据本节课的教材内容特点,为了更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用观察发现法为主,(多媒体演示法为辅,教学适时运用电教媒体化静为动),激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
(二)说学法
1、根据自主性和差异性原则,让学生“观察 猜想 概括 验证 交流 应用”的学习过程中,自主参与知识的发生、发展和形成的过程,使学生掌握知识。
2、利用实际生活中的图形,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。
五、说教具和学具准备
教具:(教学课件)三角形框架、长方形框架、正方形框架。
学具:以小组为单位准备5cm、10cm、15cm、20cm不等的纸条,大头钉。
六、说教学过程
(一)猜图游戏,激趣导入。
谈话:同学们喜欢玩游戏吗?我们在上课之前玩一个猜图游戏。
(设计意图:通过猜图游戏活动,让学生对以前学过的知识印象更深。)
(二)联系生活,初步感知
寻找我们身边、生活中的平行四边形。
(设计意图:《数学课程标准》指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的。”选择学生熟悉和感兴趣的素材,吸引学生的注意力,激发学生主动参与学习活动的热情,让学生初步感知平行四边形。)
(三)学生自主探究
1、在点子图上画,利用纸条自己做。
(设计意图:这个环节的设计,本着学生为主体的思想,敢于放手,既体现了教师的导和学安生的学,又培养了动手、动脑能力,让学生的多种感官参与活动,让学生在操作中初步体验平行四边形的一些特点。)
2、借助手中的材料研究平行四边形的特点
以小组为单位,观察制作出来的平行四边形,研究其特征。
根据平行四边行的特点判断一个四边形是不是平行四边形。出示“想想做做”第一题让学生判断。提问:为什么第2个图形不是平行四边形?
(设计意图:这个环节的设计给学生提供了充分的自主探索的空间,引导学生利用手中材料选择感兴趣的自己去发现和交流,使学生在思维的碰撞和交流中得出结论。)
七、全课总结
(设计意图:让学生从小养成对所学知识进行归纳、整理、总结。)
平行四边形教案 篇三
五年级上册第79—81页。
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
掌握平行四边的面积计算公式,并能正确运用。
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
动手操作、小组讨论、演示等
每个学生一把剪刀,一个平行四边形
一、导入:
1、出示课本p79主题图,“这是一幅街道图,仔细观察,找一找图中有哪些学过的图形?你会计算哪些图形的面积?”板书:长方形的面积=长x宽
2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”
二、探索新知
1、用数方格的方法验证:
我们把这两个花坛按比例缩小画到纸上,用数方格的方法数数看,它们的面积各是多少。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。”让学生打开书第80页,先独立思考并数一数,填一填下面的表格,然后再和同桌互相交流。(注意再引导学生找找平行四边形的底和高分别是哪里)“观察表格中的数据。你发现了什么?
2、猜测:
谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法是怎样的?这个猜想到底对不对呢?
3、探究平行四边形面积公式
不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)
学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”
小组讨论:平行四边形转化成长方形后,什么变了?什么没变?
转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?
平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底x高)(字母式)
小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。
4、应用:出示例1,谁来说一说你是怎么做的?
要求平行四边形的面积,我们必须知道哪些条件?
三、巩固练习
四、提高练习
五、总结
在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。
平行四边形教案 篇四
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的`距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习近平行四边形的面积公式.
2.证明.
例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形及其性质
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习近平行四边形的面积公式.
2.证明.
例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形教案 篇五
1.引导学生通过观察、讨论感知生活中的平行现象。
2.帮助学生初步理解平行是同一平面内两条直线的位置关系,初步认识平行线。
3.培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。
[教学重点]正确理解“同一平面内 ”“互相平行”等概念,发展学生的空间想象能力。
[教学难点]画平行线
[教具、学具准备]课件,水彩笔,尺子,三角板,小棒。
[教学过程]
一、创境引入,观察发现
生开窗户。
开窗户过程中,这扇窗户在做什么运动呢?
是的,平移是我们上个学期学过的知识,你们学得很好。我们看,窗户的一条边一开始在这个位置;平移之后,到了这个位置。你知道这条边与这条边的位置之间有什么关系吗?
这节课就让我们一起来学习习近平行线。
老师这里有几幅图,请同学们找一找,哪些图画出了你心目中的平行线?
看来,同学们对平行线都有自己的认识。到底你的想法对不对呢?,学完这节课后,相信你一定能得到一个肯定的答案。
二、积极参与,探究感受
窗户这两条直直的边我们可以看成是两条线段,这条线段如果向两端无限延伸、延伸。闭上眼睛想象一下,你看到的两条直线会怎样?会相交吗?
师:都说眼见为实,这两条直线我看到的部分的确是不相交的,可是无限延伸之后我看不到,你凭什么说他们永远不会相交呢?
宽度一样,其实就是说他们的距离处处相等。(课件验证)
因为他们的距离处处相等,无限延伸之后始终保持着这样的距离,所以,他们永远不会相交。
(板书并口述:永不相交的两条直线相互平行)
两条直线相互平行,我们也可以说其中一条就是另一条的平行线。
如果我们把两条直线分别标上名字,ab和cd,我们就说直线ab平行于直线cd.
我现在如果把这两条直线都斜过来,现在他们相互平行吗?为什么?
生活中的平行线
这些直线是相互平行的,生活中你还能找到这样的平行线吗?
看来生活中的平行线还真不少。有个小朋友叫淘气,他发现所有的窗户都太像了,没有一点儿创意。于是,他设计了这样的新型窗户。
你能接受淘气的设计吗?为什么?
刚才同学们找到的都是静止的,现在让我们看看运动中的平行线。
每周一我们都要举行升国旗仪式。国旗的上边从这里平移到了这里,他们是相互平行的。
再看看这副图。箭头从这里平移到这里。同学们,线段 hg一开始在这里,平移后到了h1g1,线段hg和线段h1g1平行吗?那你能从平移前后的箭头中,找出类似的相互平行的线段吗?
画平行线
教师演示三角尺平移法,
注意点:1、对 2、靠 3、移 4、画
学生画。
三、运用知识,解决问题
四、课堂总结,概括新知
学了这节课后,你对平行线有什么新的认识吗?
随着学习的不断深入,我们对平行的认识也会越来越深刻。
平行四边形教案 篇六
一、教材分析
1、说课内容:冀教版义务教育课程标准实验教科书五年级数学上册第96页和第97页《平行四边形面积》。
2、教材编排特点:
本节课是在学生已经初步认识了长方形、正方形和三角形以及平行四边形的基础上进行教学的,本节课是今后继续学习关于平行四边形和其他几何图形知识的基础,同时对发展学生的空间观念具有举足轻重的作用。这节课运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。
学习目标:割补、拼摆等方法,探索并掌握平行四边形面积公式,会计算平行四边形面积。
理解拼成的长方形和原来的平行四边形的关系。
感受平行四边形面积在日常生活中的应用。
重点:掌握并会用公式计算平行四边形的面积。
难点:用转化的数学思想和方法来探索平行四边形的面积公式。
二、说教法
中年级学生的思维形式正处在形象思维过渡到抽象思维的阶段。因此本节课的教学,以学生自学为主,通过观察比较小组讨论和展示使学生从感性认识上升到理性认识。学生丰富的感性材料,调动了学生多种感官,获取应有的知识。所以教法的选择以自学、对话、评价的堂结构。
三、说学法
为了达到本节课的教学目标,我始终贯彻主体性和活动性的教学思想,利用转化的思维方式,当堂检测,使学生能更好掌握所学知识,收到良好效果。指导学生运用以下学习方法:(1)动手操作的方法;(2)小组合作的方法;(3)观察比较的方法。
四、说教学过程
(一)热身训练
课的开始,我准备了三个练习题学生很快就做完了,通过学生的汇报可以知道学生对就知识掌握良好。又通过过的语言;长方形、正方形面积我们会求,那么平行四边形面积怎样求呢?这节课我们就一起来探究平行四边形面积。(板书课题)
(二)探究新知
我国著名的叶澜教授曾提出:要把课堂还给学生,让课堂焕发生命的活力。是的,学生是学习的主人,我们的教学最终要落实到个体的学习行为上,学生只有通过自己的实践体验,才能真正对所学内容有所感悟,进而化为己有。因此,在提出本节研究的问题后,我准备指导学生运用自学的学习方式,研究平行四边形的特点。
(1)课本第96页、第97页内容。让学生开动脑筋想一想、剪一剪、拼一拼,并完成任务一。在探究活动中,尊重学生独立思考的成果,鼓励学生想出多种研究方法,尽量让学生获得成功的体验。
接着以小组为单位展示研究结果,进行组际交流评价,逐步完善、归纳、平行四边形的形成。得出自己的拼法。
(设计意图:这样的设计使学生真切体验了通过自己的努力,合作,探索获得新知识的成就感。课堂上让学生充分展示自己思维过程,使学生逐步从“学会”到“会学”,最后达到“好学”的美好境界。)
(2)二通过学生认真观察比较利用转化思想,进行小组合作,小组合作之前,我先讲清合作的规则、要求。议一议:自己观察割补前后的图形有什么关系?你发现了什么?
(1)交流得出( )
(2)平行四边形的底与长方形的长( )
(3)平行四边形的高与长方形的宽( )
(4)它们的面积( )
那么
长方形面积=( )×( )
平行四边形面积=( )×( )
用字母s表示面积,a表示底,h表示高,s=()
自主反思:
通过本节课的学习,我学会了“思维从动作开始,儿童可以理解的首先是自己的动作。”通过操作,可以使学生获得丰富的感性知识,可以为学生创设一个活动、探索、思考的环境,使他们主动参与知识的形成过程。所以在这一环节我设计了以下活动:
想一想、剪一剪、拼一拼、说一说、做一做
(设计意图:这些实践活动是学生乐于接受的,在活动中人人参与,学生亲身感知了不同方式下的平行四边形,对平行四边形的特征加深认识。)
练习是掌握知识、形成技能、发展智力的重要环节。根据学生年龄特点和认知规律,本着趣味性、思考性、综合性相结合的原则,我设计以下几组练习题:
达标检测
一.我会填:
1、一个平行四边形的底为a,高为h,它的面积是( )。
2、一个平行四边形可以有( )条高。
3、平行四边形的面积是由它的( )和( )决定的。
4、一个活动的平行四边形木条框拉一拉,( )不变,( )变了,( )也随着变化了。
二、对错我来判:
1、一个平行四边形只有两条高。( )。
2、平行四边形的面积等于长方形的面积。( )。
3、面积相等的两个平行四边形,一定等底等高。( )。
三、我会算:
1、如图一,书上第97页,练一练第一题。
已知,a=4.8米,h=3.5米,求平行四边形面积?
2、已知,s=3.2分米,h=1.6分米,求平行四边形的底?
四、拓展:
1、动手量一量自己的手中平行四边形的底和高,求出它的面积。
2.、完成书上第97页问题讨论。
你也可以在好范文网搜索更多本站小编为你整理的其他平行四边形教案(新版多篇)范文。