好范文网小编为你精心整理了6篇《考研数学学习方法总结》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在好范文网搜索到更多与《考研数学学习方法总结》相关的范文。
篇1:考研数学的学习方法总结
高等数学:高等数学的分值重,是三门课程中最为重要的一科,在学习高数的过程中,要注意每种题型的训练,重点是总结,把在基础阶段不懂的知识点,强化记忆,然后系统地梳理知识点。认真研读大纲要求,在复习的过程中明确考试重点,充分把握重点。
高数第一章不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、两个重要极限、洛必达法则等等,还要总结求极限过程中常用到的转化、化简的方法。对函数的连续性的探讨也是考试的重点,这要求考生要充分理解函数连续的定义和掌握判断连续性的方法。对于导数和微分,其实重点不是给一个函数求导数,而是导数的定义,也就是抽象函数的可导性,理清连续、可导、可微之间的关系,分清一元与多元的异同。
对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,在求积分的过程中,一定要注意积分的对称性,利用分段积分去掉绝对值把积分求出来。中值定理一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于微分部分,隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学一里面还包括了三重积分,掌握积分区域具有可加性、二重积分对称性的应用、二重积分直角坐标和极坐标的变换、二重积分转换成累次积分计算这些知识点。另外还有曲线和曲面积分,这是数一必考的重点内容。一阶微分方程,掌握几个教材中的几种类型的求解就可以了。还有无穷级数,要掌握判别敛散性、幂级数的展开和求和常用的方法和技巧。
线性代数:线性代数考试题型不多,计算方法比较初等,但是往往计算量比较大,导致很多考生对线性代数感到棘手。从理论的角度出发,线性代数的很多概念和性质之间的联系很多,特别要根据每年线性代数的两道大题考试内容,找出所涉及到的概念与方法之间的联系与区别。例如向量组的秩与矩阵的秩之间的联系,向量的线性相关性与齐次方程组是否有非零解之间的联系,向量的线性表示与非齐次线性方程组解的讨论之间的联系,实对称阵的对角化与实二次型化标准形之间的联系等。掌握他们之间的联系与区别,对做线性代数的两个大题在解题思路和方法上会有很大的帮助。
复习过程中,综合掌握“一条主线,两种运算,三个工具”。一条主线是解线性方程组,两种运算是求行列式、矩阵的初等行(列)变换,三个工具是行列式、矩阵、向量。其中,向量组线性相关性是难点,要理解记忆各条定理,理清其中关系,多做题巩固知识点。特征向量与二次型虽不难,但年年必考,计算能力要跟上,多做题才能提高正确率。
概率论与数理统计:概率论与数理统计课程的主要特点是概念和公式繁多,章节的关系松散,应用题比较抽象,所以复习时要注重这些概念的理解。第一、二章是基础,很少单独命题,经常结合后面的章节进行考察,但这两章要深刻理解,只有这部分内容透彻理解后面的内容才能容易掌握。概率部分要重点掌握的是二维随机变量的概率分布、边缘分布、条件分布、独立性等概念,要把定义和对应计算公式掌握的很熟练。另外,数学期望、方差、协方差、相关系数等数字特征的概念及计算公式也要重点复习,因为这几个概念是每年必考,并且主要考计算。最后,这部分难点是多维随机变量的函数的分布。
这个考点最近几年每年必考,并且主要以大题的形式出现。虽然是难点,但是方法还是比较固定的,掌握每种题型的方法即可。大数定律和中心极限定理不是考试的重点,考纲要求是了解,所以只要掌握定理的条件和结论。数理统计部分主要围绕三大统计量分布,点估计是这部分内容的重难点,经常会考解答题。统计量的评选标准中的无偏估计要重点复习,有效性和相合性了解即可。区间估计和假设检验这么多年考的比较少,所以也是了解一下,找几个小题做一下就行了。
篇2:考研数学学习方法
一,教材
教材是基础,但是没有好好研究教材就去做各种练习题,就如同没有学会走就想学跑一样,基础不牢,结果必然不会太好。所以,教材真的很重要,这里并不是说把教材的所有知识点背熟、书上的例题练习题都做一遍就完事,而是要真正理解教材里提到的知识点、基本的定义定理,光靠背诵和做题是没用的,举一反三是建立在深刻理解的基础上。
二,真题
所有考过的学长学姐都会向后辈反复强调真题的重要性,因为真题真的很重要!重要的事情要加感叹号!!!下面就简要说说如何利用真题,每个人使用真题都有自己的方法,本文的方法也只是参考。
1、不要认为真题得放到最后做,真题的利用价值堪比黄金,所以一定要充分利用才算赚到了。基本上从强化复习开始,真题就要开始做起来了。
2、不要以为真题做了一遍答案都记住了,第二遍、第三遍再做真题时就没有效果了。第一遍做的时候是检测自己到底有哪些知识点没有记住以及自己和考试的差距到底有多少。做完真题要认真分析,为什么没有做对,是理解问题还是计算问题,是定义定理的概念模糊了还是根本就没有明白要考的知识点是什么。这些都需要考生去认真分析。只有这样才算是真正利用好了真题。
3、第二遍以及之后做真题时,你会发现你很有可能在同一个问题上犯两次甚至更多同样的错误,这个时候考生需要高度警惕,这绝对就是你复习时没有注意到的“漏洞”或者是你没有完全掌握的知识点,必须想办法(找老师或者找高手同学)解决掉,不然考试碰到此类问题你还是会失分。
4、做真题的次数多了,还可能发现一些平时容易忽略的小失误,比如第一次做对了,第二次却做错了,这些小失误也在一定程度上反映出你的知识点其实是没有完全掌握的。
5、做真题的最高境界不是全都做对了,而且把每道题都吃透了,考的是什么知识点,,还有没有其他更好的解法有什么陷阱甚至连出题人的心理都能摸索的清清楚楚。
三,复习方法
这一点其实是见仁见智的。有些考生习惯先把教材通读甚至精读了有了很好的基础再去做真题,这种方法很稳打稳扎,但是要注意时间,真题从强化阶段就要开始准备了。也有考生在复习之前就做一套真题,通过裸考检验自己的真实水平,再有的放矢的进行教材复习,也不失为一种好方法。
篇3:考研数学学习方法
考研数学的学习方法有很多,这里为您简单介绍一下:
1.课本为主,资料为辅。数学的核心是基础,所以一定要以课本为主,复习的时候以笔记的形式把知识归纳整理出来,好记性不如烂笔头,多写写才会记忆更深刻。由于考研数学范围广,所以建议你们多查阅资料,尤其是有些很偏的科目,看是否有对本专业有帮助的资料。
2.持之以恒,坚持到底。整个数学复习的大计划是由每个月的小计划、每一周的中计划、每一天的大计划组成的,只要把每一天的任务量安排好,把每一章的知识点总结出来,把每一节的例题找出来,坚持到底,基本就没有问题了。
3.练习题为主,模拟题为辅。练习题和例题结合起来学习,边学习边做题,学习效率更高。另外,要特别注意把错题总结出来,错题本不一定要列出来,但一定要把错题搞懂,把错题的错因总结出来。
4.老师为主,同学为辅。平时上课多和老师交流,下课认真复习老师留下的题目,如果能找到同学一起复习效果会更好,可以互相督促、互相学习。
以上就是考研数学的学习方法,希望能对您有所帮助。
篇4:考研数学学习方法
考研数学要想复习好,是需要下一番苦功的,以下是一些学习方法:
1.每天保证8小时睡眠。
2.不要熬夜学习,会适得其反。
3.制定学习计划。规定每天哪些时间段是专门学数学的,哪些时间段是专门做题、复习做过的题等。
4.读懂题目。数学题目读不懂,自然就做不出来了。
5.做题时要找到思路。做题时,一定要找到思路。
6.总结。每周将本周做错的题总结到错题本上,将本周学习的方法总结到本子上,以便于后期复习。
7.考前半个月,将错题在温习一遍。
8.不要偷懒,将老师留的作业保质保量的完成。
9.适当放松,读一些有助心情愉悦的书。
10.多喝白开水,少喝饮料。
11.考前一定要放松自己,保持良好的心态。
总之,要想提高数学成绩,需要踏实、勤奋、持之以恒,不断积累,不断总结,才能取得好成绩。
篇5:考研数学的学习方法
1.概念学习法
“概念学习法”是学习高等数学的基本方法之一。这一方法顾名思义,就是从基本概念入手。这些概念一般都很抽象,必须理解其数学意义。基本概念是课程知识体系的支撑点,掌握了基本概念就等于抓住了纲。从概念入手,一旦了解了概念,把握住概念中的核心词汇,就如同把握了公式中的各个元素,在做题的时候就有坚实的基础,容易对症下药。数学的考题总是有严密的科学性,精确的答案,因而在打牢基础的前提下,万变不离其中的灵活运用概念,一切难题都会迎刃而解。
2.重视预习与复习
强化课前预习和课后复习。由于信息容量大、内容抽象、新旧知识关联密切、讲课不是“照本宣科”,因此,做好课前预习是提高听课效率的重要手段和方法。数学科目不像有的文字学科是分板块分部分的,一个部分没有学好在学另一个部分的时候,相关性不强就可以从头来学,对于这部分的分数不会有太大影响。而数学科目是循序渐进的,基础没打好,积下的问题在未来的学习中就会像滚雪球一样越滚越大,让人不堪重负,最终只能弃戟投降。强调课前预习和课后复习,能够帮助扫清每次学习中所预留或余留的问题,为数学取得高分扫清障碍。
另外,预习也是提高自学能力的有效途径。预习要达到的目的,一是复习新课要引用的旧知识点,二是发现问题,提出问题,使听课能有的放矢。
课后复习,既是学习的重要环节,又是一种学习的方法。这一阶段是一个丰富的消化知识的过程,包括思考、置疑、解难、分析与综合、归纳与小结,可以用到的学习方法有“联想学习法”、“比较学习法”、“求师学习法”、“交友学习法”等等。需要你思考、思考再思考;需要你多问,懂得“知不知,则有知;无不知,则无知”的道理。复习的主要目的就是加强对教学内容的理解。即弄清每个知识点的内容是什么?叫“知其所以然”,最后还要知道它的价值和意义,“知其然”。
3.加强实践,多做题
学习的基本矛盾是不知与知的矛盾、知识与能力的矛盾。所以,学习包含两个过程:从不知到知的过程,将知识转化为能力的过程。从某种意义上来说,后一个过程更加重要。知识只有转化为能力才有力量。数学教育的一个直接目的就是解决数学问题,将所学的基本概念、基本定理和基本方法转化为抽象思维、逻辑推理及运算能力。做大量的数学题是必然的途径。做题的过程反过来又加深了对基本概念、基本定理的理解,对基本方法的掌握,相辅相成。因此,在课后复习的基础上,大量地做数学题是学习数学最重要的方法。
4.在理解的基础上加深记忆。
记忆是学习过程中一个非常重要的环节,是掌握知识的手段。俄国生理学家谢切诺夫说过:“人的一切智慧财富都是与记忆相联系着的,一切智慧的根源都在于记忆。”从某种意义上说,没有记忆就没有学习,人在认识过程中就无积累,就没有继承。一切如过眼烟云。当然也不能死记硬背,正如歌德所说:“你所不理解的东西,是你无法占有的”。
篇6:考研数学的学习方法
一、把握原则,早准备、早计划、早复习
所谓原则,就是要按照大纲复习,吃透大纲。考研数学试题极少出现过超纲现象,考生把全部基本的概念、原理搞懂了,就几乎相当于押中全部考题。因此,在复习过程中,一定要针对大纲和教材具体研究,将二者有机的结合起来。也不要完全迷信考纲,有时会出现考纲里没有考试中却出现的情况(如:2003年数学四中的第八大题,特例,请区别对待)。结合本科教材和大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好等因为忽略了基本而失分的现象在近年的考试中出现很多。
把握原则,要同“三早”结合起来,数学需要一定量的消化理解时间,只有早做安排,才能圆满地完成打好基础、提高能力、查漏补缺、应对考试的整个复习过程。一般情况下数学在大三下学期就开始着手准备,此时主要工作是把课本中的定理等内容过一边,考研班可以选择此时上,或者也可以在暑期上。从暑期或秋季开始,就要买本全面的参考书来开始系统的复习。
二、选择好教材与辅导材料
基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统一考试试卷分为数学一、数学二、数学三和数学四。因此,考生首先要根据自己的专业选择好适合自己的教材,而后选择辅导材料。
在选择辅导书时,一定要看这本书是否涵盖了考试大纲,是否系统整理出并点出了考试重点,设置了各个层次、各种类型的题目,对方法和技巧有专门的训练和讲解。有一些教材没有涵盖大纲要求的全部内容(如:函数平均值这个考点,在很多教材中都找不到,大纲中却出现了)。
三、重视基础,灵活运用,多练习
数学的复习基本可以分为两个层次,一是基础性的训练,二是思维上的训练。
基础性的训练,要从复习之初就加以重视。从2003年阅卷情况来看,考生失分的主要原因是基本功不过关,大多数考生往往因为一个考点没掌握而影响了整道题的运算,最终导致失分。所以考生在复习过程当中一定要重视数学概念、原理的掌握和计算过程的训练,争取在考试过程中,只要是会的就不丢分。没有基本功而刻意追求方法和技巧,抠一些难题、偏题没有任何意义,绝大部分的方法和技巧是建立在有一定基本功基础之上的。因此,平时的训练中一定要有计算量的训练,在数学考试中,填空和选择占了全部分数的1/3左右,这部分题的计算量和难度相对来说较小,是最容易得分的部分。如果想过线或者取得高分,这部分就不能掉以轻心。由于这部分对计算准确性的要求很高,考生在日常训练中更要注重计算量和计算准确性的训练。
思维上的训练,存在于整个复习过程中,在最后考试的时候得以充分检验。在平常的复习过程中,要有意识的培养逆向思维、抽象思维、和定向思维的能力。在训练中,要注意理解和总结一些技巧性的东西,有意识的提高自己思维的灵活性。要争取一题多种解法,即概念要相通,在自我训练过程中多思考,灵活运用概念原理。
要进行综合性试题和应用题训练。数学考试会出现一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。在数学首轮复习期间,可以不将它们作为强化重点,但也应逐步进行一些训练,积累解题思路,同时这也有利于对所学知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。
四、充分利用历年试题
利用历年试题,有助于总结归纳解题思路、套路和经验。数学考试不需背诵,也不要自由发挥,全部任务就是解题,而基本概念、公式、结论等也只有在反复练习中才会真正理解与巩固。做题时特别要强调分析研究题目和解题思路。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。考数学一的同学,最好看看往年的其它类数学的真题,如经济类的概率、数二的线代等等,一方面这些题目有可能难于数一的,另一方面,这些考题有可能稍作变换后就出现在后些年的数一考试中。