这里能搜索到更多你想要的范文→
当前位置:好范文网 > 工作总结 > 其他工作总结范文 >

初一数学知识点总结精品多篇

发布时间:2023-08-13 17:20:14 审核编辑:本站小编下载该Word文档收藏本文

【概述】初一数学知识点总结精品多篇为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

初一数学知识点总结精品多篇

初中数学知识点总结 篇一

知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。例如:0、3.4、9/10、π(圆周率)。

非负数

非负数大于或等于0。

非负数中含有有理数和无理数。

非负数的和或积仍是非负数。

非负数的和为零,则每个非负数必等于零。

非负数的积为零,则至少有一个非负数为零。

非负数的绝对值等于本身。

常见的非负数

实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。

常见表现形式

非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。

知识归纳:任何一个非负数乘以-1都会得到一个非正数。

中考初中数学知识点总结 篇二

角度制知识:用度(°)、分(′)、秒(″)来测量角的大小的制度叫做角度制。

角度制

角度制:规定周角的360分之一为1度的角,用度作为单位来度量角的单位制叫做角度制。

角度制中单位的换算。

角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。

角度制就是运用60进制的例子。

角度制中角度的运算。

两个角相加时,°与°相加,′与′相加,″与″相加,其中如果满60则进1。

两个角相减时,°与°相减,′与′相减,″与″相减,其中如果不够则从上一个单位退1当作60。

测量角的大小的另外一个方法,角度制与弧度制的换算。

主要把握180°=π rad这个关系式。

例如:1度=π /180 弧度30度转换成弧度值:弧度=30*π /180终边相同的角的表示β=α+k360°k属于整数。

知识归纳:除了角度制可以测量角的大小,还有一种——弧度制也可以测量角的大小。

初中数学必考的知识点总结 篇三

一、平行四边形的定义、性质及判定

1、两组对边平行的四边形是平行四边形。

2、性质:

(1)平行四边形的对边相等且平行

(2)平行四边形的对角相等,邻角互补

(3)平行四边形的对角线互相平分

3、判定:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

4、对称性:平行四边形是中心对称图形

二、矩形的定义、性质及判定

1、定义:有一个角是直角的平行四边形叫做矩形

2、性质:矩形的四个角都是直角,矩形的对角线相等

3、判定:

(1)有一个角是直角的平行四边形叫做矩形

(2)有三个角是直角的四边形是矩形

(3)两条对角线相等的平行四边形是矩形

4、对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定

1、定义:有一组邻边相等的平行四边形叫做菱形

(1)菱形的四条边都相等

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形

(4)菱形的面积等于两条对角线长的积的一半

2、s菱=争6(n、6分别为对角线长)

3、判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形

(3)对角线互相垂直的平行四边形是菱形

4、对称性:菱形是轴对称图形也是中心对称图形

中考初中数学知识点总结 篇四

把一元二次方程化成ax2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。

公式法

公式:x=[-b±√(b2-4ac)]/2a

当Δ=b2-4ac>0时,求根公式为x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(两个不相等的实数根)

当Δ=b2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)

当Δ=b2-4ac<0时,求根公式为x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a

例3.用公式法解方程 2x2-8x=-5

解:将方程化为一般形式:2x2-8x+5=0

∴a=2, b=-8,c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= (4±√6)/2

∴原方程的解为x?=(4+√6)/2,x?=(4-√6)/2.

大家不知道的是两个复数根在初中数学的学习中理解为无实数根。

初中数学知识点总结 篇五

三角和的公式

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

倍角公式

tan2A = 2tanA/(1-tan2 A)

Sin2A=2SinA?CosA

Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

三倍角公式

sin3A = 3sinA-4(sinA)3;

cos3A = 4(cosA)3 -3cosA

tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

三角函数特殊值

α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

三角函数记忆顺口溜

1三角函数记忆口诀

“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

2符号判断口诀

全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。

“ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。

3三角函数顺口溜

三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

初中数学知识点总结 篇六

一、旋转

1、定义

把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称

1、定义

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征(3分)

1、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(—x,—y)

2、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,—y)

3、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(—x,y)

数学学习中常见问题分析

大部分学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的学生在解答数学题的时候始终不能把握解题技巧,也就是说学生缺乏对待数学的举一反三能力。

还有的学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致学生学不好数学的原因。

常见面积定理

1、一个图形的面积等于它的各部分面积的和;

2、两个全等图形的面积相等;

3、等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底的和相等)的面积相等;

4、等底(或等高)的三角形、平行四边形、梯形的面积比等于其所对应的高(或底)的比;

5、相似三角形的面积比等于相似比的平方;

6、等角或补角的三角形面积的比,等于夹等角或补角的两边的乘积的比;等角的平行四边形面积比等于夹等角的两边乘积的比;

7、任何一条曲线都可以用一个函数y=f(x)来表示,那么,这条曲线所围成的面积就是对X求积分。

初中数学知识点总结 篇七

一、函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

二、相交线与平行线

1、知识网络结构

2、知识要点

(1)在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

(2)在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

(3)两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是

邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,

与互为邻补角。+=180°;+=180°;+=180°;+=180°。

3、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=; =。

4、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当a⊥b时,====90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

5、同位角、内错角、同旁内角基本特征:

在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。

在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

三、实数

1、实数的分类

(1)按定义分类:

(2)按性质符号分类:

注:0既不是正数也不是负数。

2、实数的相关概念

(1)相反数

①代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数。0的相反数是0.

②几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称。

③互为相反数的两个数之和等于0.a、b互为相反数a+b=0.

(2)绝对值|a|≥0.

(3)倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。

(4)平方根

①如果一个数的平方等于a,这个数就叫做a的平方根。一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。a(a≥0)的平方根记作。

②一个正数a的正的平方根,叫做a的算术平方根。a(a≥0)的算术平方根记作。

(5)立方根

如果x3=a,那么x叫做a的立方根。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

3、实数与数轴

数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可。

4、实数大小的比较

(1)对于数轴上的任意两个点,靠右边的点所表示的数较大。

(2)正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。

(3)无理数的比较大小:

你也可以在好范文网搜索更多本站小编为你整理的其他初一数学知识点总结精品多篇范文。

word该篇DOC格式初一数学知识点总结精品多篇范文,共有2995个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
初一数学知识点总结精品多篇下载
初一数学知识点总结精品多篇.doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 暂无