[引言]高三物理知识点总结【精品多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
高三物理知识点总结 篇一
摩擦力
1、定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。
2、产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。
说明:三个条件缺一不可,特别要注意“相对”的理解。
3、摩擦力的方向:
①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。
②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。
说明:(1)“与相对运动方向相反”不能等同于“与运动方向相反”。
滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。
(2)滑动摩擦力可能起动力作用,也可能起阻力作用。
4、摩擦力的大小:
(1)静摩擦力的大小:
①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过静摩擦力,即0≤f≤fm但跟接触面相互挤压力FN无直接关系。具体大小可由物体的运动状态结合动力学规律求解。
②静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。
③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。
(2)滑动摩擦力的大小:
滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。
公式:F=μFN(F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。
说明:①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。
②μ与接触面的材料、接触面的情况有关,无单位。
③滑动摩擦力大小,与相对运动的速度大小无关。
5、摩擦力的效果:总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。
说明:滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关。
考物理知识点总结:动量守恒
动量守恒
所谓“动量守恒”,意指“动量保持恒定”。考虑到“动量改变”的原因是“合外力的冲”所致,所以“动量守恒条件”的直接表述似乎应该是“合外力的冲量为O”。但在动量守恒定律的实际表述中,其“动量守恒条件”却是“合外力为。”。究其原因,实际上可以从如下两个方面予以解释。
(1)“条件表述”应该针对过程
考虑到“冲量”是“力”对“时间”的累积,而“合外力的冲量为O”的相应条件可以有三种不同的情况与之对应:第一,合外力为O而时间不为O;第二,合外力不为0而时间为。;第三,合外力与时间均为。显然,对应于后两种情况下的相应表述没有任何实际意义,因为在“时间为。”的相应条件下讨论动量守恒,实际上就相当于做出了一个毫无价值的无效判断―“此时的动量等于此时的动量”。这就是说:既然动量守恒定律针对的是系统经历某一过程而在特定条件下动量保持恒定,那么相应的条件就应该针对过程进行表述,就应该回避“合外力的冲量为O”的相应表述中所包含的那两种使“过程”退缩为“状态”的无价值状况
(2)“条件表述”须精细到状态
考虑到“冲量”是“过程量”,而作为“过程量”的“合外力的冲量”即使为。,也不能保证系统的动量在某一过程中始终保持恒定。因为完全可能出现如下状况,即:在某一过程中的前一阶段,系统的动量发生了变化;而在该过程中的后一阶段,系统的动量又发生了相应于前一阶段变化的逆变化而恰好恢复到初状态下的动量。对应于这样的过程,系统在相应过程中“合外力的冲量”确实为O,但却不能保证系统动量在过程中保持恒定,充其量也只是保证了系统在过程的始末状态下的动量相同而已,这就是说:既然动量守恒定律针对的是系统经历某一过程而在特定条件下动量保持恒定,那么相应的条件就应该在针对过程进行表述的同时精细到过程的每一个状态,就应该回避“合外力的冲量为。”的相应表述只能够控制“过程”而无法约束“状态
‘弹性正碰”的“定量研究”
“弹性正碰”的“碰撞结果”
质量为跳,和m:的小球分别以vl。和跳。的速度发生弹性正碰,设碰后两球的速度分别为二,和二2,则根据碰撞过程中动量守恒和弹性碰撞过程中系统始末动能相等的相应规律依次可得。
“碰撞结果”的“表述结构”
作为“碰撞结果”,碰后两个小球的速度表达式在结构上具备了如下特征,即:若把任意一个小球的碰后速度表达式中的下标作“1”与“2”之间的代换,则必将得到另一个小球的碰后速度表达式。“碰撞结构”在“表述结构”上所具备的上述特征,其缘由当追溯到“弹性正碰”所遵循的规律表达的结构特征:在碰撞过程动量守恒和碰撞始末动能相等的两个方程中,若针对下标作“1”与“2”之间的代换,则方程不变。
“动量”与“动能”的切入点
“动量”和“动能”都是从动力学角度描述机械运动状态的参量,若在其间作细致的比对和深人的剖析,则区别是显然的:动量决定着物体克服相同阻力还能够运动多久,动能决定着物体克服相同阻力还能够运动多远;动量是以机械运动量化机械运动,动能则是以机械运动与其他运动的关系量化机械运动。
高三物理知识点总结 篇二
1、麦克斯韦的电磁场理论
(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。
(2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。
(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。
2、电磁波
(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。
(2)电磁波是横波
(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3。00×108m/s。
高三物理知识点总结 篇三
1、交变电流:大小和方向都随时间作周期性变化的电流,叫做交变电流。按正弦规律变化的电动势、电流称为正弦交流电。
2、正弦交流电----(1)函数式:e=Emsinωt(其中★Em=NBSω)
(2)线圈平面与中性面重合时,磁通量,电动势为零,磁通量的变化率为零,线圈平面与中心面垂直时,磁通量为零,电动势,磁通量的变化率。
(3)若从线圈平面和磁场方向平行时开始计时,交变电流的。变化规律为i=Imcosωt。
(4)图像:正弦交流电的电动势e、电流i、和电压u,其变化规律可用函数图像描述。
3、表征交变电流的物理量
(1)瞬时值:交流电某一时刻的值,常用e、u、i表示。
(2)值:Em=NBSω,值Em(Um,Im)与线圈的形状,以及转动轴处于线圈平面内哪个位置无关。在考虑电容器的耐压值时,则应根据交流电的值。
(3)有效值:交流电的有效值是根据电流的热效应来规定的。即在同一时间内,跟某一交流电能使同一电阻产生相等热量的直流电的数值,叫做该交流电的有效值。
①求电功、电功率以及确定保险丝的熔断电流等物理量时,要用有效值计算,有效值与值之间的关系
E=Em/,U=Um/,I=Im/只适用于正弦交流电,其他交变电流的有效值只能根据有效值的定义来计算,切不可乱套公式。②在正弦交流电中,各种交流电器设备上标示值及交流电表上的测量值都指有效值。
(4)周期和频率----周期T:交流电完成一次周期性变化所需的时间。在一个周期内,交流电的方向变化两次。
频率f:交流电在1s内完成周期性变化的次数。角频率:ω=2π/T=2πf。
4、电感、电容对交变电流的影响
(1)电感:通直流、阻交流;通低频、阻高频。(2)电容:通交流、隔直流;通高频、阻低频。
5、变压器:
(1)理想变压器:工作时无功率损失(即无铜损、铁损),因此,理想变压器原副线圈电阻均不计。
(2)★理想变压器的关系式:
①电压关系:U1/U2=n1/n2(变压比),即电压与匝数成正比。
②功率关系:P入=P出,即I1U1=I2U2+I3U3+…
③电流关系:I1/I2=n2/n1(变流比),即对只有一个副线圈的变压器电流跟匝数成反比。
(3)变压器的高压线圈匝数多而通过的电流小,可用较细的导线绕制,低压线圈匝数少而通过的电流大,应当用较粗的导线绕制。
6、电能的输送-----(1)关键:减少输电线上电能的损失:P耗=I2R线
(2)方法:①减小输电导线的电阻,如采用电阻率小的材料;加大导线的横截面积。②提高输电电压,减小输电电流。前一方法的作用十分有限,代价较高,一般采用后一种方法。
(3)远距离输电过程:输电导线损耗的电功率:P损=(P/U)2R线,因此,当输送的电能一定时,输电电压增大到原来的n倍,输电导线上损耗的功率就减少到原来的1/n2。
(4)解有关远距离输电问题时,公式P损=U线I线或P损=U线2R线不常用,其原因是在一般情况下,U线不易求出,且易把U线和U总相混淆而造成错误。
高三物理知识点总结 篇四
1、电流
(1)定义:电荷的定向移动形成电流。
(2)电流的方向:规定正电荷定向移动的方向为电流的方向。
在外电路中电流由高电势点流向低电势点,在电源的内部电流由低电势点流向高电势点(由负极流向正极)。
2、电流强度:
(1)定义:通过导体横截面的电量跟通过这些电量所用时间的比值,I=q/t
(2)在国际单位制中电流的单位是安。1mA=10-3A,1μA=10-6A
(3)电流强度的定义式中,如果是正、负离子同时定向移动,q应为正负离子的电荷量和。
3、电阻
(1)定义:导体两端的电压与通过导体中的电流的比值叫导体的电阻。(2)定义式:R=U/I,单位:Ω
(3)电阻是导体本身的属性,跟导体两端的电压及通过电流无关。
4★★。电阻定律
(1)内容:在温度不变时,导体的电阻R与它的长度L成正比,与它的横截面积S成反比。
(2)公式:R=ρL/S。(3)适用条件:①粗细均匀的导线;②浓度均匀的电解液。
5、电阻率:
反映了材料对电流的阻碍作用。
(1)有些材料的电阻率随温度升高而增大(如金属);有些材料的电阻率随温度升高而减小(如半导体和绝缘体);有些材料的电阻率几乎不受温度影响(如锰铜和康铜)。
(2)半导体:导电性能介于导体和绝缘体之间,而且电阻随温度的增加而减小,这种材料称为半导体,半导体有热敏特性,光敏特性,掺入微量杂质特性。
(3)超导现象:当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫超导现象,处于这种状态的物体叫超导体。
6、电功和电热
(1)电功和电功率:
电流做功的实质是电场力对电荷做功。电场力对电荷做功,电荷的电势能减少,电势能转化为其他形式的能。因此电功W=qU=UIt,这是计算电功普遍适用的公式。
单位时间内电流做的功叫电功率,P=W/t=UI,这是计算电功率普遍适用的公式。
(2)★焦耳定律:Q=I2Rt,式中Q表示电流通过导体产生的热量,单位是J。焦耳定律无论是对纯电阻电路还是对非纯电阻电路都是适用的。
(3)电功和电热的关系
①纯电阻电路消耗的电能全部转化为热能,电功和电热是相等的。所以有W=Q,UIt=I2Rt,U=IR(欧姆定律成立),
②非纯电阻电路消耗的电能一部分转化为热能,另一部分转化为其他形式的能。所以有W>Q,UIt>I2Rt,U>IR(欧姆定律不成立)。
高三物理知识点总结 篇五
1、简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2、单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ>r}
3、受迫振动频率特点:f=f驱动力
4、发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5、机械波、横波、纵波〔见第二册P2〕
6、波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7、声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8、波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9、波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10、多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
高三物理知识点总结 篇六
机械振动在介质中的传播称为机械波(mechanical wave)。机械波与电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的许多物理性质,如:折射、反射等是一致的,描述它们的物理量也是相同的。常见的机械波有:水波、声波、地震波。
机械振动产生机械波,机械波的传递一定要有介质,有机械振动但不一定有机械波产生。
形成条件
波源
波源也称振源,指能够维持振动的传播,不间断的输入能量,并能发出波的物体或物体所在的初始位置。波源即是机械波形成的必要条件,也是电磁波形成的必要条件。
波源可以认为是第一个开始振动的质点,波源开始振动后,介质中的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。
介质
广义的介质可以是包含一种物质的另一种物质。在机械波中,介质特指机械波借以传播的物质。仅有波源而没有介质时,机械波不会产生,例如,真空中的闹钟无法发出声音。机械波在介质中的传播速率是由介质本身的固有性质决定的。在不同介质中,波速是不同的。
传播方式与特点
机械波在传播过程中,每一个质点都只做上下(左右)的简谐振动,即,质点本身并不随着机械波的传播而前进,也就是说,机械波的一质点运动是沿一水平直线进行的。例如:人的声带不会随着声波的传播而离开口腔。简谐振动做等幅震动,理想状态下可看作做能量守恒的运动。阻尼振动为能量逐渐损失的运动。
为了说明机械波在传播时质点运动的特点,现已绳波(右下图)为例进行介绍,其他形式的机械波同理[1]。
绳波是一种简单的横波,在日常生活中,我们拿起一根绳子的一端进行一次抖动,就可以看见一个波形在绳子上传播,如果连续不断地进行周期性上下抖动,就形成了绳波[1]。
把绳分成许多小部分,每一小部分都看成一个质点,相邻两个质点间,有弹力的相互作用。第一个质点在外力作用下振动后,就会带动第二个质点振动,只是质点二的振动比前者落后。这样,前一个质点的振动带动后一个质点的振动,依次带动下去,振动也就发生区域向远处的传播,从而形成了绳波。如果在绳子上任取一点系上红布条,我们还可以发现,红布条只是在上下振动,并没有随波前进[1]。
由此,我们可以发现,介质中的每个质点,在波传播时,都只做简谐振动(可以是上下,也可以是左右),机械波可以看成是一种运动形式的传播,质点本身不会沿着波的传播方向移动。
对质点运动方向的判定有很多方法,比如对比前一个质点的运动;还可以用"上坡下,下坡上"进行判定,即沿着波的传播方向,向上远离平衡位置的质点向下运动,向下远离平衡位置的质点向上运动。
机械波传播的本质
在机械波传播的过程中,介质里本来相对静止的质点,随着机械波的传播而发生振动,这表明这些质点获得了能量,这个能量是从波源通过前面的质点依次传来的。所以,机械波传播的实质是能量的传播,这种能量可以很小,也可以很大,海洋的潮汐能甚至可以用来发电,这是维持机械波(水波)传播的能量转化成了电能。
机械波
机械振动在介质中的传播称为机械波。机械波与电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波,例如光波,可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的许多物理性质,如:折射、反射等是一致的,描述它们的物理量也是相同的。常见的机械波有:水波、声波、地震波。
高三物理知识点总结 篇七
1、磁场
(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。永磁体和电流都能在空间产生磁场。变化的电场也能产生磁场。
(2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。
(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用。
(4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。
(5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。
2、磁感线
(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。
(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。
(3)几种典型磁场的磁感线的分布:
①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。
②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场。
③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱。
④匀强磁场:磁感应强度的大小处处相等、方向处处相同。匀强磁场中的磁感线是分布均匀、方向相同的平行直线。
3、磁感应强度
(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL。单位T,1T=1N/(A·m)。
(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。
(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。
(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。
4、地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:
(1)地磁场的N极在地球南极附近,S极在地球北极附近。
(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下。
(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北。
5★。安培力
(1)安培力大小F=BIL。式中F、B、I要两两垂直,L是有效长度。若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度。
(2)安培力的方向由左手定则判定。
(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零。
6、★洛伦兹力
(1)洛伦兹力的大小f=qvB,条件:v⊥B。当v∥B时,f=0。
(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功。
(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现。所以洛伦兹力的方向与安培力的方向一样也由左手定则判定。
(4)在磁场中静止的电荷不受洛伦兹力作用。
7、★★★带电粒子在磁场中的运动规律
在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),
(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动。
(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动。①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB
8、带电粒子在复合场中运动
(1)带电粒子在复合场中做直线运动
①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解。
②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解。
(2)带电粒子在复合场中做曲线运动
①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解。
②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解。
③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“”、“”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。
物理学是研究自然界中物理现象的科学。这些现象包括力现象,声音现象,热现象,电和磁现象,光现象,原子和原子核的运动变化等现象。学习物理的主要任务就要研究这些现象,找出其中的规律,了解产生这些现象的原因,并使同学们知道和掌握,以更好地为生产和生活服务。我们知道,我们周围的世界就是由物质构成的,许多生产和生活现象都是物理现象,要学好物理,就要认真观察周围存在的各种物理现象。
高三物理知识点总结 篇八
一、质点的运动
(1)直线运动
1)匀变速直线运动
1、速度Vt=Vo+at 2.位移s=Vot+at/2=V平t= Vt/2t
3、有用推论Vt-Vo=2as
4、平均速度V平=s/t(定义式)
5、中间时刻速度Vt/2=V平=(Vt+Vo)/2
6、中间位置速度Vs/2=√[(Vo+Vt)/2]
7、加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8、实验用推论Δs=aT{Δs为连续相邻相等时间(T)内位移之差}
9、主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点。位移和路程。参考系。时间与时刻;速度与速率。瞬时速度。
2)自由落体运动
初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
3)竖直上抛运动
1、位移s=Vot-gt2/2
2、末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3、有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5、往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、力(常见的力、力的合成与分解)
1)常见的力
1、重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2、胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3、滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4、静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5、万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6、静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7、电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8、安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9、洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向);
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1、同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2、互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3、合力大小范围:|F1-F2|≤F≤|F1+F2|
4、力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
3)动力学(运动和力)
1、牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2、牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3、牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4、共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5、超重:FN>G,失重:FN
6、牛顿运动定律的`适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
三、曲线运动、万有引力
1)平抛运动
1、水平方向速度:Vx=Vo
2、竖直方向速度:Vy=gt
3、水平方向位移:x=Vot
4、竖直方向位移:y=gt2/2
5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7、合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo
8、水平方向加速度:ax=0;竖直方向加速度:ay=g
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1、线速度V=s/t=2πr/T
2、角速度ω=Φ/t=2π/T=2πf
3、向心加速度a=V2/r=ω2r=(2π/T)2r
4、向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5、周期与频率:T=1/f
6、角速度与线速度的关系:V=ωr
7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8、主要物理量及单位:弧长(s):(m);角度(Φ):弧度(rad);频率(f);赫(Hz);周期(T):秒(s);转速(n);r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1、开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2、万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3、天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4、卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5、第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6、地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
四、功和能(功是能量转化的量度)
1、功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2、重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3、电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4、电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5、功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6、汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}
7、汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8、电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9、焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10、纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11、动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12、重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13、电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14、动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15、机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16、重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);
(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;
(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;
(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
五、电场
1、两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2、库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3、电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4、真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5、匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6、电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7、电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8、电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9、电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10、电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11、电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12、电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13、平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器
14、带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
3)常见电场的电场线分布要求熟记;
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽/示波管、示波器及其应用等势面。
六、恒定电流
1、电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2、欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3、电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4、闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5、电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6、焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7、纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8、电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总
{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9、电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10、欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11、伏安法测电阻
电流表内接法: 电流表外接法:
电压表示数:U=UR+UA 电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)
选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<
12、滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp>Rx 便于调节电压的选择条件Rp
注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。
七、磁场
1、磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2、安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3、洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4、在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);
解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
(2)磁感线的特点及其常见磁场的磁感线分布要掌握;
(3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料
八、电磁感应
1、[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;
(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。
(4)其它相关内容:自感/日光灯。
高三物理知识点总结 篇九
(1)重力是由于地球对物体的吸引而产生的。
[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力。
但在地球表面附近,可以认为重力近似等于万有引力
(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g
(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上。
弹力
(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的。
(2)产生条件:①直接接触;②有弹性形变。
(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。在点面接触的情况下,垂直于面;
在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。
①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。
②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。
(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。弹簧弹力可由胡克定律来求解。
你也可以在好范文网搜索更多本站小编为你整理的其他高三物理知识点总结【精品多篇】范文。